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Welcome to FES 781b  
Introduction to Spatial Statistics 

 
 

Syllabus Overview 

 On CANVAS as web page.  Updated periodically.   
 

Software and Books 

 See Syllabus for recommended books.  Both main books 
are electronically available for free.  Several other 
inexpensive texts are also excellent aids. 

 Optional intro to R Times TBA shortly.  You will 
absolutely learn (and need to learn) R in this class. 
 

Projects 

 Need a dataset – soon! 

 Work in a group if you like – you may learn more with 
someone to work with! 
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DATA 

 If you have data that interests you, let us know and we’ll 
try to use it in class. 

 
 
Your Questions . . . 
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What kind of data will this class help me 
analyze? 
 
Here are some projects from students in the last few years : 
 

 Location of UBER pickups over a one month period in the 
Bay Area 

 Location of 2300 incidents (enemy action, detainee 
operation, friendly action) in Afghanistan from 2007 to 
2009.  Includes number of people killed or injured. 

 Location of U.S. negative tweets about Russian during 
2014 Winter Games 

 Location of murders in Chicago over a two year period 

 Cougar sightings in Maine 

 Location of US airports and crashes 

 Location of babesiosis and Lyme disease in CT 

 Location of firing neurons in a rat brain 
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What are Spatial Statistics? 
(Also known as geostatistics, spatial epidemiology, medical 
geography, spatial patterns, etc.) 

 
In order to discuss Spatial statistics we first have to discuss 
 

Spatial Data 
 
Spatial Data are proximate observations measured in 
Space or Time (or both!)  (space and time are related 
in spatial analysis and in other fields . . .) 
 
 In Space, observations are usually in 1 to 3 dimensions 

(two being the most common).  However, the methods we 
discuss can be applied to higher dimensional spaces 
(although plots are challenging!)  Higher dimensional point 
process data is used in analysis of electron microscope data, 
for example. 
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 Time observations are basically a one-dimensional 
equivalent to Space measurements 
 

 Several recent books on the combination of space and time 
(http://www.wiley.com/WileyCDA/WileyTitle/productCd-
EHEP002348.html)  

 
Both kinds of spatial data are assumed to follow the 
 
 

First Law of Geography (Time)  : Everything is 

related to everything else, but near things are more 

related than far things”  (Tobler, 1970) 
 
  

http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002348.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002348.html
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Statistically, this is called (positive) 
 

 SPATIAL AUTOCORRELATION  

 
Basically, pairs of observations in near space/time are more 
similar than those that are further apart. 
  

NOTE : this means that spatial data violates one the 

key pillars assumed in most statistical inference :  

 
SO : Spatial statistics consists of 
statistical methods designed to describe / 
test / model / predict relationships among 
spatially patterned data. 
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The spatial trends that result may be due to one of two 
processes (or both) :  
 
1. If observations are actually independent, then observed 

patterns are the result of an underlying spatial gradient 
or trend – this ‘means’ we’re talking about the MEAN! 

 
This trend may be linear, quadratic, erratic, or otherwise 

 
2. If observations are NOT independent, we may observe 

o Clustering of observations (sometimes called 
patches) or 

o Correlation of proximate measurements (i.e. 
pollution levels, soil moisture, etc) 
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Of course the opposite is also possible – observations 
pushing each other apart, or observations that are negatively 
correlated . . . 

 
So why all the fuss about independence?!? 
 
 
 

 Autocorrelation between spatial observations leads to an 
effective reduction in sample size. 

 

 Magnitude of the autocorrelation is affected by the  
sampling unit  
 

 Information about autocorrelation can aid prediction 
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Example : Your Basic Confidence 
Interval 
 
Recall the : 
 
 

 
Central Limit Theorem 

If X1, X2, . . . Xn are a sample of n independent and 

identically distributed trials from any distribution with 

mean  and standard deviation , then for n large enough, 

 ),(~
n

NX n


  
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Suppose that the X’s happen to have a normal distribution 

with  

 mean   unknown  

 variance 
2  known  

 

(say the X’s are soil pH samples from adjacent plots) 

 
The CLT tells us that a 95% Confidence interval for the mean 

  is     
n

X n


96.1  

 
This is because  
  

n
XVar n

2

)(



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A little aside : Recall that if X1 and X2 are independent then  

)()()( 2121 XVarXVarXXVar   

 

HOWEVER : if X1 and X2 are NOT INDEPENDENT then   

 

),(2)()()( 212121 XXCovXVarXVarXXVar   

What is the Covariance?!? 
 
The Covariance is just unscaled Correlation : 
 

21
),(),( 2121 XXXXnCorrelatioXXCov   

 

so if X1 and X2 are independent then 0),( 21 XXCov  

 

Incidentally,      )(),( 111 XVarXXCov   
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Back to our Confidence Interval  . . . . . . 
 

NOW : Suppose that the X’s are a set of observations in 

space (time) such that they are NOT INDEPENDENT.  In 
particular, we’ll say that  
 

ji

ji XXCov


  2),(    where   nji ,...,2,1,   

 

Basically, this is saying that all the Xi have variance 
2

neighboring observations (distance 1)  have a correlation of 

  and observations further away (distance 2, 3, 4, etc.)  have 

correlation 
32 , , etc. : 

 



FES 781b Spatial Stats - JDRS 13 

 
Think about our confidence interval : if you like algebra, you 
can show that 
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                               54321 XXXXX

                                  

Usually,  =0 and this is all zero!!! 
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Who Cares!?!?! 
 
Let’s add numbers : suppose you measure the 
pH of soil in 10 adjacent plots on a line, each 

one unit apart, and find that 610 X .   

 

You happen to know that 1 .   

The CLT states that  
10

1
10 XVar  and we would make the 

following  95% Confidence Interval :  

10

1
96.16   
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HOWEVER : suppose that plots are spatially correlated, say 
 =0.26.  In this case, our algebra shows that 

   6.1
10

1
10 XVar  

 
And our confidence interval REALLY should be 

 

6.1*
10

1
96.16   

 
 
Another way of thinking about this.  In this example, taking 10 
dependent observations is equivalent to taking 

25.6
6.1

10   independent observations!   
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Note : while space and time are basically 

equivalent in spatial analyses, time series analysis 

has developed as its own area of study.  This isn’t 

that class and we’ll focus on Space.  
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Types of Spatial Data 
 
Cressie (1993) identifies three main branches of spatial 
statistics : 
 

 Spatial Point Processes 

 Geostatistics (spatially continuous data) 

 Discrete Spatial Variation (lattice data) 
 

 
However, first, a bit more about how we measure and quantify 
spatial data . . . 
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More on Spatial Data 
 
Lots of divisions/names – mildly tricky to sort out 
 

Quantifying spatial data 
 
Requires the transformation of 
continuous, complex world into 
discrete, finite representations.   
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Haining (Spatial Data Analysis, 2003, p.44) distinguishes between 
Objects and Fields 
 
Objects : discrete things with unique locations 

Examples : houses, cities (with defined boundaries), a 
road, a census block, a disease instance location. 

 
Fields : characteristics which exist continuously across a 
region (or a ‘field!’) 

Examples : snow depth, soil moisture, land use, soil 
type, elevation, air pollution level, population density, 
average rent 
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Example : Hainling, p.45
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Waller and Gotway (p. 39) use a slightly different description :  
 

“Spatial data consists of Features indexed by spatial 

locations and with specified Supports, and Attributes 
associated with those features.” 

 
Features (objects): an object (or unit of measurement) with a 
specific spatial location. 
 
Support : the properties necessary to describe a feature, 
namely Size, Shape, Location, and Orientation 
 
  



FES 781b Spatial Stats - JDRS 22 

Here are four types of features and supports : 
 

Feature Feature Description Support 

Point 
A precise location in space, a dot 
on a map.  Location of a tree or a 
disease case 

Location (usually (x,y)), (no 
shape, orientation or size) 

Line 

A sequence of connected points 
(linear or curved).  Roads, 
streams, park boundaries, fault 
lines. 

Location (x,y), length, and 
direction/orientation.  (no 
size) 

Area 
Region enclosed by lines.  Parks, 
states, lakes, etc. 

Location (x,y), area, shape 
(rectangle, circle, wacky), 
orientation. 

Volume 
An area with height/depth.  
Aquifers 

Location, volume, shape, 
orientation 
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Attributes : measured variables associated with a particular 
feature 
 
A little problem : Fields consist of 
uncountably infinitely many features with 
associated attributes (i.e in a plot, there are 
infinitely many locations were you could 
measure snow depth).   
 
Storing data about a field requires a finite 
representation.  There are several ways to do this: 
 

 Contour Lines / Density Estimation : a regular curve is 
defined over the field 

 

 Pixels : a field is divided into small regular spatial units  
(for example, a GRID).  The size of the pixel determines 
the Spatial Resolution. 
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 Regions : If groups of pixels are relatively homogenous, 
a field can be partitioned into regions  or  irregular 
polygons.  This requires denoting boundaries between 
regions.  Sometimes regions are predefined and rates 
are then calculated within a region (i.e. states, counties, 
etc). 

 
Example : Figure 1 of Cressie and Chan, 1989, Spatial Modeling 
of Regional Variables. J. Amer. Stat. Assoc., 84:393-401. The 
number shown in each county is the alphabetical ordering in 
Table 1 of the same article, which deals with spatial modeling of 
counts of SIDS data for 
counties in North Carolina, 
USA. 
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Spatial Scale : Point Patterns 
 
Legendre (1998, p.708) describes three elements of 
the scale on which spatial sampling is done : 
 
Grain Size : size of elementary sampling units.  Can be 
length, diameter, volume, or time interval.  This is sometimes 
also called the resolution. 
 
Sampling interval : average 
distance between sampling 
units.  In time series, this the 
lag. 
 
Extent : Total length, area, 
volume, time included in the 
study.  Also called range.   
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Example : for satellite imagery, grain 
size = pixel size and sampling 
interval = grain size. 
 

 
 
 
 
 

The question of spatial scale is crucial to 
spatial statistics 
 
Example : Think back to pH in a field.  Suppose you want to 
estimate the average pH in a field.   How many observations 
should you take?  (a bit of discussion here) 
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Geodesy  (where in the world  . . .  ?) 

 
 Spatial data is usually measured somewhere on the 

earth. 
 

 This requires a coordinate system (like latitude, longitude), 
and a projection (from a mostly-sphere to a plane).   

 

 See Waller and Gotway, pages 40-49 for a nice discussion 
of this, or take intro to GIS, or talk Dana Tomlin (resident 
GIS expert). 

 

 If you’re new to this, you can lose LOTS of time trying to 
work this issue out and merge datasets (like measurement 
points with an outline of an island . . .) 

 
Assuming you’ve solved this, we can talk about 
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Distance or Metrics between 
Spatial Observations   
 

Continuous/Interval Distance Measures  
(a few of dozens possible) 
 
1. Euclidean: root sum-of-squares of differences 

on each variable (most common – the straight 

line ‘as the crow flies’ distance between points a 

and b) : 

 
21

1

2







  



k

i
biaiab

XXD  

For most spatial data, k=2 
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2. Manhattan : sum of absolute differences over variables 
(i.e. have to go on city blocks to get there – not as 
the crow flies) 





k

i
biaiab

XXD
1  

 
These are both specific examples of the more 
general 
 

3. Minkowski :  
mk

i

m

biaiab
XXD
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4. Squared Euclidean :  
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5. Great Arc Length : This applies to two points on 

a globe :  ,, 11 a    22 ,b  where 

 ,  are the latitude, longitude values.  For 

these points 

 

 

(where 6378 is the radius of the spherical earth in km) 

 
6. Time : any ordinal metric that seems appropriate  

 
  

 )cos(coscossinsinarccos6378 212121  abD
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2.00.0

1.0

0.0

X1

X
2

A

B

Example :  Two points, two variables (n=2, k=2) 

 
A : (0,0)  
B : (2,1) 
 
 
 

 

Euclidean distance :     24.20201
22
  

 

Manhattan distance : 30201   
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Recording Spatial Data :  
Vector vs . Rastor 
 
Vector  

 Individual locations are recorded using 
vector notation (direction, length).   

 Regions are defined by connected vectors which make a 
polygon.   

 Usually requires less storage space than rastor. 
 
Rastor 

 Data is recorded for every pixel in a grid over a defined 
region.   
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 Usually requires more storage space (but compression 
can reduce this)  

 

Figure by Brian Klinkenberg, Department of Geography, University of British Columbia 
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Topics We’ll Cover : A BRIEF Overview 
 
 

Visualizing Spatial Data 

 (a graph is worth 1000 data points . . .) 
 
We won’t really cover this as a separate 
topic, but visualizations of spatial 
phenomenon are integral to the field. 
  

Maps : Point maps, contour maps, image maps, surface 
maps, symbol maps, density maps, etc. 
 
Smoothing : weighted averages, kernel smoothing, non-
parametric regression, splines, edge effects. 
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Point Processes 

 This deals primarily with data that occurs only at a 
discrete point (i.e. tree location, disease location, house 
location, etc).   

 The detection of patterns requires knowing what we 
mean by ‘no pattern’.   

 This requires a discussion of complete spatial 
randomness.   

 This allows us to then discuss other phenomenon : 
clustering, regularity, stationary processes. 
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 This leads to hypothesis tests for spatial point patterns 
– random vs. not random 

 Then we move to kernel intensity/density estimation 
and K-functions  (this means we estimate an underlying 
generating function for the location of points!) 
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Example : Uganda Volcano Locations.  This 
dataset has the locations of 120 volcanoes in 
the Bunyaruguru volcanic field in west Uganda.  
Below are kernel smoothed estimates   
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Without going into too many details, below is a plot used to 
evaluate clustering/exclusion at various distances in the 
Uganda volcano data 
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 Next we compare the distribution of two simultaneous 
point processes (i.e. disease cases and controls, or two 
species of trees, etc.) to see if the processes are 
attracting/repulsing each other. 
 

 FINALLY we'll talk about how to model spatial point 
patterns under certain assumptions. 

 

 
Measures of Spatial Autocorrelation 

 To see if spatially measured attributes are correlated, we 
have to come up with hypothesis tests. 

 We’ll discuss measures of autocorrelation : Moran’s I, 
Geary’s c. 

 We’ll also discuss goodness of fit statistics for various 
models. 
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Geostatistical Modeling 

 How do we model data where we allow the X’s to be 

intentionally correlated?   

 This is a BIG topic that requires review about non-
correlated linear models and random vs. fixed effects.   

 Another problem that arises is how to model data where 
near observations are more similar – is the similarity due 
to an underlying common MEAN function, or is it 
because near things are CORRELATED? 
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 Variograms, Semivariograms, 
Correlograms.  Essentially, this 
is where we quantify the first law 
of geography (what is a 
mathematical representation of 
how near things are related to 
each other, and at what distance 
are characteristics independent?) 

 
Spatial Prediction/Kriging 
 

 Spatial prediction : kriging, co-kriging.  This is really a 
sub-category of Generalized Linear Models for 
Correlated Data.  It allows us to make a model using 
spatial data to make predictions of values at new 
locations using information about spatial correlation.   
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Examples : Smoky Mountains pH data.  Data 
collected on pH levels in Great Smolky Mountaisn 
National Park.  Goal is to predict pH at unmeasured 
locations AND estimate the errors at each point as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simple Kriging 
Prediction 

Error 
Surface 
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Ordinary Kriging using anisotropic model (i.e. spatial 
correlation is directional!!!) 
 
 

 

 
  

Ordinary Kriging 
Prediction 

Error 
Surface 
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Geographically Weighted Regression 
 

 Exploratory technique designed to indicate where non-
stationarity exists on a map 

 Essentially, it identifies where local 
regression coefficients depart from 
the global estimates.   

 It uses a moving weighted localized 
window to create localized 
estimates of coefficients at any 
chosen point. 
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Matrices and Vectors 
 
 
Free Linear Algebra Book online : http://joshua.smcvt.edu/linearalgebra/ 
Here's another one : http://linear.ups.edu/download.html 
Here's a free MIT course :  http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ 
Also, Chapter 4 of Dan Zelterman’s book is PERFECT for what you need to know for this class 
 

 Multivariate analysis involves ‘many variables’ 

(represented as ,...,, 321 XXX ) 

 Each continuous variable can be represented along a 
line in ‘one dimension’ 

Data Examples :  COLUMNS = VARIABLES! 

  

http://joshua.smcvt.edu/linearalgebra/
http://linear.ups.edu/download.html
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
http://orbis.library.yale.edu/vwebv/holdingsInfo?searchId=3122&recCount=50&recPointer=11&bibId=12544221


FES781/STAT674 Spatial Stats - Matrices 2 
 

World Bank Data, 2013.  This data set examines 17 
measures for 217 countries from around the world. LOTS of 
missing data.   Here's a sample for a few countries: 

Country Name Deforestation Rural CO2 per 
Capita 

GNI per 
capita 

Energy Use 
2011 

Life 
Expectancy 

Albania 1.898606 44.617 1.499316 4520 768.0615635 77.35046 

Algeria 11.55369 30.49 3.331512 4970 1108.281628 70.88217 

Angola 4.502755 57.51 1.555966 4510 672.739215 51.464 

Antigua and Barbuda 4.854369 75.357 5.885158 12720  75.66532 

 

Music Attitudes.  Attitudes on 5 point scale from a 1993 
survey of 1000+ people (1=strong like, 5=strong dislike) 
 
 
 

ID country classicl jazz latin rap reggae oldies 

1 3 1 2 4 5 5 4 

2 3 1 1 1 4 3 1 

3 3 1 3 2 4 4 1 

4 3 1 2 5 5 5 2 



FES781/STAT674 Spatial Stats - Matrices 3 
 

 The measurement of two continuous variables for a 
given observation can be represented by a point in two-
dimensional space 

 

Ex : for the World Bank Data, we 
represent CO2 per capita and Live 
Expectancy for Albania : 

3.77,5.1 21  XX  

 

 In general, the measurement of p   continuous variables 

for a given object/person can be represented by a point 
in p -dimensional space 

  

(1.5,77.3) 
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 Ex: 4-dimensional space : values for Albania: 

3.77  ,768  ,4520  ,5.1 4321  XXXX  

(years) Expectancy Life   ,capitaper  Energy Use

  ,capitaper  GNI  ,capitaper  CO2

43

21





XX

XX  

 

(1.5, 4520, 768, 77.3) 

(can’t draw this point - but, we can represent as a list of numbers!) 

 

 

Vectors and Matrices are how we deal  
with points in p -dimensional space! 
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Matrices  

A Matrix is : 

 A rectangular group of numbers 

 A useful and natural way of organizing 
data/information 

 Notation : an r x c matrix has r rows 
and c columns. 

 r and c constitute the dimension of the matrix. 

 In General, COLUMNS are variables and ROWS are 
observations for DATA matrices. 
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Examples (World Bank Data, 2013).  For five countries, 
measure 3 variables.    

Data Matrix (5x3) 

                           Variables 

 

  
Deforest. 

Rate % Rural 
Life 

Expectancy 

Albania 1.9 44.6 77.4 

Algeria 11.6 30.5 70.9 

Angola 4.5 57.5 51.5 

Antigua 4.9 75.4 75.7 

Argentina 16.9 8.5 76 

Correlation Matrix (3x3) 

 Deforest 
% 

Rural 
Life 
Exp 

Deforest 1 -0.82 0.42 

% Rural -0.82 1 0.08 

Life Exp 0.42 0.08 1 

 

Observations 
or 

Subjects 
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Matrices are denoted by UPPER CASE bold letters  

A ,   or     X   for a data matrix 

A general matrix of data has n observations (rows) and p 
variables (columns) 

 

 

 

npnn

p

p

pn

xxx

xxx

xxx









21

22221

11211

n Obs

2 Obs

1 Obs

pVar 2Var 1Var 



X

Often list the 
dimensions of 
the matrix at 
the bottom 
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For the Music data, the entire dataset is a matrix with 15 
columns and 1134 rows. 

 

A matrix with only one column (or row) is a VECTOR.   

 

 Vectors are denoted by a bold lower case letter 

(sometimes with a squiggle on top) like x or x~  

 

Examples : Deforestation Rate Column Vector x :  
 

Row Vector for Albania : 

 

 

 

 

























9.16

9.4

5.4

6.11

9.1

15
x

 4.776.449.1
31



x
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Thus, a row vector for a dataset represents all the data 
collected for that observation and is just a point in p-
dimensional space: 

 

 

 

 

  

 4.776.449.1
31



x
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Vectors are also useful for giving summary statistics for 
a whole set of variables : 

 

Example : Music Attitudes Data  - 7x1 vectors 
gives the mean and standard deviation of the 
average attitude for each type of music 
simultaneously : 

 

country  1.10 

classicl 1.22 

jazz     1.08 

latin    1.08 

rap      1.13 

reggae   1.18 

oldies   1.06 

country  2.39 

classicl 2.65 

jazz     2.54 

latin    3.15 

rap      3.88 

reggae   3.15 

oldies   2.15 


17
x 

17
s
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Square Matrix  : has equal numbers of rows and columns   

(i.e. r = c) 

 

A couple of square 3x3 matrices :  

 






































801

057

423

333231

232221

131211

33

aaa

aaa

aaa

A  

 






































543

782

016

333231

232221

131211

33

bbb

bbb

bbb

B  

Read subscripts as ‘row, 
column’ (i.e. this is the 
number in the third row 
and the second column) 
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Trace of a Matrix : the sum of the 
elements on the diagonal of a SQUARE 
matrix (can’t get the trace of a non-square 
matrix) 

 

Examples : 

 

  16

801

057

423

33





















trtr A           3

100

010

001

33





















trtr I  
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Transpose of a Matrix 

Just reverse the rows and the columns  (first 
row becomes first column, second row is 

second column, etc.).  Written as A           

(‘A transpose’) 

 

If 










 057

423

32
A     then   




















04

52

73

23
A  

 

 

Definition : if AA   then A  is said to be Symmetric 

(opposite is also true : if A  is symmetric then AA  ) 
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Example : Correlation 
matrices are symmetric 

 

 

 

Note – for a matrix to be symmetric, it has to be a 

square matrix! 

 

A related idea is : 

Transpose of a vector 

 A vector a  with only one column (an rx1 matrix) 

becomes a vector a(a 1xr matrix) 

 Deforest 
Fem. 

illit 
Male 
Illit. 

Deforest 1 0.6 0.64 

Fem. illit 0.6 1 0.99 

Male illit 0.64 0.99 1 
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Example :  






















2

7

3

13
a   ,       273

31



a ,         

Manipulating Matrices 
 Most of the usual algebraic manipulations of numbers 

have a counterpart in matrices. 

 

Addition/Subtraction of a constant 

Add constant to each element of matrix.  If k = -3,  
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







































































532

324

110

383031

303537

343233

333231

232221

131211

kakaka

kakaka

kakaka

kA
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Multiplication/Division by a constant 

Multiply each element of matrix by the constant.  If k = 2, 























































1602

01014

846

2*82*02*1

2*02*52*7

2*42*22*3

333231

232221

131211

kakaka

kakaka

kakaka

kA
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Addition/Subtraction of matrices.  Just add element 
by element.   

 

 ONLY possible if the dimensions of the 
matrices are the same. 

 

























333332323131

232322222121

131312121111

bababa

bababa

bababa

BA  
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For example :  

 
























































1344

7139

439

543

782

016

801

057

423

3333
BA  

 

But . . .  

 

@#??@#$

543

782

016

057

423

3332





























BC

x
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

































333231

232221

131211

333231

232221

131211

bbb

bbb

bbb

aaa

aaa

aaa

AB

























333323321331323322321231313321321131

332323221321322322221221312321221121

331323121311321322121211311321121111

bababababababababa

bababababababababa

bababababababababa

 

 

Multiplication of Matrices (not what you’d think) 

 

 

 
 

 

 

 

 

 

 

Because of the definition, BAAB  (in general) 

For our example, 
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



































543

782

016

         ,

801

057

423

BA  

 











































403330

354752

343534

..3*82*06*1

..3*02*56*7

..3*42*26*3

etcetc

etcetc

etcetc

AB  

 











































522642

644469

241725

..1*57*43*3

..1*77*83*2

..1*07*16*3

etcetc

etcetc

etcetc

BA  
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NOTE :  TO MULTIPLY MATRICES, THE NUMBER OF 

COLUMNS IN THE FIRST MATRIX MUST EQUAL THE 

NUMBER OF ROWS IN THE SECOND MATRIX. 
 

 

Examples of Matrix/Vector multiplication : 

 

  62273

2

7

3

273 222

1331






















aa  
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This is a 1x1 matrix, i.e. just a number, called a SCALER.   

 

 

 














































4146

144921

6219

273

2

7

3

3113
aa  

 

Here, get a 3x3 symmetric matrix. 

 

 

   44156

801

057

423

273
3331




















 x

Aa  
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This produces a 1x3 vector (matrix) 

 

  463

2

7

3

801

057

423

273
133331





































aAa

x

 

 

Here, we get a scaler (a number)! 

 

Examples :  

 2x3 times 3x5 matrix gives a 2x5 matrix 

 1x6 times a 6x1 matrix gives a 1x1 matrix = a number! 

 1x6 matrix times a 2x4 matrix can’t be done! 
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You try it :  For the matrices below find 

A+3,   A+C,   B+C 

AB,  BA, B 
 

 

First column vector of C times the transpose of 

the same column. 

 



















801

854

321

A     





















13

32

11

B     



















104

302

102

C   
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Matrices in 
 
R was made for doing matrices – it thinks in matrices!  You 
create ‘objects’ that are matrices, and then it’s easy to 
manipulate them. 
 
There are lots of ways to get data into R, but here I’m doing it 
manually 
 
matrixA<-matrix(c(3,2,4,7,5,0,1,0,8),ncol=3,byrow=T) 

matrixB<-matrix(c(6,1,0,2,8,7,3,4,5),ncol=3,byrow=T) 

 
Here is the first matrix 
 

matrixA 

     [,1] [,2] [,3] 

[1,]    3    2    4 

[2,]    7    5    0 

[3,]    1    0    8 

The A matrix + 5 
 

matrixA+5 

     [,1] [,2] [,3] 

[1,]    8    7    9 

[2,]   12   10    5 

[3,]    6    5   13 
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Add the A and B matrices 
 

matrixA+matrixB 

     [,1] [,2] [,3] 

[1,]    9    3    4 

[2,]    9   13    7 

[3,]    4    4   13 

 

Multiply the A and B matrices 
 

matrixA%*%matrixB 

     [,1] [,2] [,3] 

[1,]   34   35   34 

[2,]   52   47   35 

[3,]   30   33   40 

 
Transpose of a matrix 
 

t(matrixA) 

     [,1] [,2] [,3] 

[1,]    3    7    1 

[2,]    2    5    0 

[3,]    4    0    8 
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 Identity Matrix  : I  (the multivariate version of 1)  

 Square, symmetric matrix  

 Diagonal elements are all 1 

 All other elements are zero 

 Matrix product of I  with any other 
matrix A  is just the other matrix  A   : 

AIAAI   

 

This lets us talk about  . . 

Inverse of a Matrix  : 
1

A


  

 Only exists for square matrices 

 The matrix such that IAAAA
11  

 

 Doesn’t always exist 




















100

010

001

33
I
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 Only exists if the rows and columns of A  are all linearly 
independent (i.e. no row or column is simply the linear 
combination of other rows or columns. 

 

Example : The columns of this 
matrix are independent because 
the only constants 

21,cc  that will 

make the equation true are 021  cc  

 

However, this matrix does not 
have independent columns  since 
the constants 2,1 21  cc  are 

a solution to the equation. 

  





































0

0

1

2

4

3
      ,

14

23
21 ccA





































0

0

1

2
*2

2

4
*1      ,

12

24
A
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 If the inverse exists, A  is called non-singular or 
invertible.   

 If the inverse does not exist, A  is called singular or 
non-invertible. 

 

Example : The inverse of the matrix :  

 









































 

08.017.042.0

33.267.167.4

67.133.133.3

         ,

801

057

423
1

AA
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However, the inverse of this matrix does not 
exist since the last row is equal to the sum 
of the first two rows.  This matrix is singular 
(non-invertible).   

 

 

You figure it out : what is the inverse of  I?   

What is the inverse of the matrix below?




















4710

057

423

33
A




















100

050

003

33
A



FES781/STAT674 Spatial Stats - Matrices 32 
 

Getting the inverse – can be done by hand, but it’s messy.   
 

 

Matrix Inverse in R:  Use the solve() function 
solve(matrixA) 

 

           [,1]       [,2]        [,3] 

[1,] -3.3333333  1.3333333  1.66666667 

[2,]  4.6666667 -1.6666667 -2.33333333 

[3,]  0.4166667 -0.1666667 -0.08333333 
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Determinant of a matrix 

 Denoted by A  

 Calculated only for SQUARE 
matrices. 

 It’s a single value (number) or a 
scaler 

 Calculation is somewhat complicated.   

 

For a 2x2 matrix : 











 dc

ba

22
A                    bcadDet  AA)(  
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For a 3x3 matrix, put the matrix next to itself.  Multiply 
along arrows and then add/subtract as indicated 

 

aei + bfg + cdh  - ceg - afh - bdi 
 

Example :  12

801

057

423



















A  

+ + - - - 

































ihg

fed

cba

ihg

fed

cba

































ihg

fed

cba

ihg

fed

cba
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Matrix Determinant in R:  Use the det() function 
det(matrixA) 

      [1] -12 

 

A Few Matrix Algebra Rules 

 

Addition : ABBA   

Multiplication :  

In general, BAAB   

However,    CABBCA    (order doesn’t matter) 

Inverse : IAAAA   11
 

Transpose :   ABAB 

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Variances and Covariances  

 

The sample Variance / Standard Deviation  of 
1X  is 

 1

)(

)( 1

2

11

1








n

xx

XVar

n

i
i

     )( 11
XVarsX   

 

and the sample correlation r  of 
1X  and 

2X  is defined as 

 









2

22

2

11

2211
21

)()(

))((
),(

xxxx

xxxx
XXr

ii

ii
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The denominator of this equation is the product of the 

standard deviations of 
1X  and 

2X  (and )1(1 n  ) 

The sample Covariance is simply defined as the numerator 

of the correlation  (multiplied by )1(1 n  ): 

)1(

))((
),( 2211

21






n

xxxx
XXCov ii

 

This means the the correlation can be re-written as 
 

21

),(
),( 21

21

XX ss

XXCov
XXr   

 
I.e. :  Correlation is Standardized Covariance! 
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Note that if 
1X  =

2X , the covariance is simply the variance of 
1X     

),()( 111 XXCovXVar   

Correlation / Covariance matrices 

Example : Let’s suppose we observe the following data 
(made up from Stevens, renamed by me) : 
 
 
 
 
 
 
 
Let’s look at the mean-centered data, or the deviations (i.e. 
how much does each data point for each variable vary 
around the mean) 
 

 Male Illiteracy Rate Female Illiteracy Rate 

Canada 1 1 
Russia 3 4 
Albania 2 7 

MEAN 2 4 
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




































 




































2.321.31

2.221.21

2.121.11

30

01

31

42

42

42

72

43

11

xxxx

xxxx

xxxx

d

XX

X  

 
 

The transpose of this matrix is   













303

011
dX  
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FES781/STAT674 Spatial Stats - Matrices 41 
 

Define the matrix of Sums of Squares and Cross-Products:  
 

























 















183

32

30

01

31

303

011
dd XXSSCP  

Note that 

 This is a square, symmetric matrix 

 The main diagonal entries are the numerators of the 

variance :  
 1

)(

)( 1

2

11

1








n

xx

XVar

n

i
i

 and the off-

diagonal entries are the numerator of the covariance : 
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



































2.321.31

2.221.21

2.121.11

2.322.222.12

1.311.211.11

xxxx

xxxx

xxxx

xxxxxx

xxxxxx
dd XX

 

    

     




























3

1

2

2.2

3

1
2.21.1

3

1
2.21.1

3

1

2

1.1

i
i

i
ii

i
ii

i
i

xxxxxx

xxxxxx
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SO : dividing SSCP by (n-1) gives the matrix of 

VARIANCES AND COVARIANCES 
 
 
 
 
 

     












95.1

5.11

)1(n

SSCP
S  

 

 

 

Incidentally, the TRACE of S  gives the TOTAL VARIANCE 
of all variables (just add up the diagonal values – this turns 
out to be useful in PCA . . .) 

Variance of Male Illiteracy 

Variance of Female Illiteracy 

Covariance of Male and 
Female Illiteracy 
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Matrices meet Regression 
 
Usual multiple regression model in scalar notation :  if 

you have p  predictors, the value of iY  for a single 

observation i  is given by 
 

ippoi XXY   ...11   ,       ni ,...,2,1  

 

),0(~ 2 N
i
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NOW : if    

























p

o










2

1

β

   is a 1p  column vector and 

 pi XXX 211x  is a p1  row vector then 

 
 

iiiY  βx    (very compact) 
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NEXT – stack up all the these equations on top of each other, 
one for each observation in the dataset : 
 
 
 
 
 
 
 
 
 
 

THAT IS :     εXβY   

  





























































































pp

o

npnn

p

p

p

p xxx

xxx

xxx

xxx

Y

Y

Y

Y






























3

2

1

2

1

21

33231

22221

11211

3

2

1

1

1

1

1



FES781/STAT674 Spatial Stats - Matrices 47 
 

What is handy is that we can use matrices to talk about 
other aspects of regression 
 
Mean 

 

 For the i th observation,  iii |YEμ x  : that is, on 

average, what is the expected or average value of iY  

given a particular vector ix . 

 Average value of all n  observations : 
 

Y  = Mean of Y  =    XβX|Yμ  E  
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Variance – assuming homoscedasticity 
(constant variance!)  
 

 For the i th observation,   2ii|YV x  (same 

for every observation) 

 Covariance matrix of all n  observations : 
 

  IX|Y
2V    (where I is the identity matrix) 

 

Estimated value of β  

 
Algebra plus partial derivatives shows that 
(https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf)  
 

  YXXXβ 
1ˆ     so that    eβXY  ˆˆ  

https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf
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 Spatial Point Patterns 
 
 

Resources :  

 Diggle 2014  Also, check out book website : 
http://www.lancaster.ac.uk/staff/diggle/pointpatternbook/datasets/ ) 

 B&G, Chapter 3 

 Waller and Gotway, Chapter 5  

 Baddeley Short Course – AWESOME! 

 Baddeley et all book (2015) 

 Cressie Chapter 8 

 B.D. Ripley, Modelling Spatial Patterns, JRSS, 1977 
(39(2), 172-212.  A foundational article. 

     (Ripley has several books on Point Processes) 

 Online : Kate Beard of University of Maine has a nice set 
of notes for which I am grateful : See Lecture 6-11 : 
http://reuningscherer.net/fes781/beardnotes/ 
 

 

A Spatial Pointilism Process 

http://www.lancaster.ac.uk/staff/diggle/pointpatternbook/
http://www.lancaster.ac.uk/staff/diggle/pointpatternbook/datasets/
https://research.csiro.au/software/r-workshop-notes/
https://www.crcpress.com/books/details/9781482210200/
http://reuningscherer.net/fes781/beardnotes/
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What is a Point Process? 
 
Diggle (2013) puts it nicely : "A spatial point pattern is a set 
of locations, irregularly distributed within a designated region 
and presumed to have been generated by some form of 
stochastic mechanism (p. xxix)" 

 
 A point process consist of N observations over a region R  

(or a domain D  or a window W ) where each observation 
consists of a single, discrete location. 

 

 R  (or D  or W ) is a subset of 
d , and we’ll deal with 

2d  dimensions : that is R  is a Region of a plane.  

However, becoming more common to have  3d  either as 
volume, or as space-time (i.e. disease case at a particular 
time). 
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How do we get a Point Process? 

 A Point Process is a special kind of Stochastic Process. 

 A Stochastic Process is a probabilistic model defined by a set 

of random variables   NXXX ,..., 21  

Recall that a random variable is a numerical 
outcome of a random experiment 

 Usually the  NXXX ,..., 21  represent the same 

measurement at the i th time or place 

Example : iX  might be soil temperature at location i  

A Spatial Point Process is a stochastic process where 

each iX  is the numeric representation of a point 

location in space (usually 
2 , i.e. a planar process) 
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Some authors distinguish between an  

Event : an actual observation in region R 

Point : any other location of interest in region R 
 

 

What will we do with a Point Process? 

1) Determine if the events we observe follow a ‘random’ 
pattern or if they exhibit either clustering or 
systematic patterns 
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2) Estimate how the intensity of the point process varies 
over an area  (i.e. the MEAN of the process) 

3) Estimate the presence of spatial dependence among 
events (a.k.a the VARIANCE of the process) 

4) Develop models to describe what we observe 

5) Develop testing procedures to ‘prove’ departures 
from randomness 

6) Examine how multiple point processes interact with 
each other 

7) Examine how other continuous variables (covariates) 
interact with a spatial point process 
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Definitions 

 
MARKS – each point has an associated attribute which 
could be categorical (species, disease status), or continuous 
(diameter). 

 
Example : Maine Tree Data.  
This is data Tim collected on different 
species at a site in Maine – the 
location of each instance of 7 tree 
species was noted over a rectangular 
region.  Here is a marked version for 
two species : paper birch and white 
pine.   We can look at the relative 
distribution of each species, but marks 
allow to examine whether these two 
processes interact with each other. 
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Just paper birch, marked by diameter 
at breast height (DBH) : 

  

  Paper Birch - Diameter=DBH
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COVARIATE – explanatory continuous data measured 

across R.   Can be displayed as an image or a contour plot.   
This information can be used to predict probability of  
 
Example : (from spatstat : http://mapas.mma.gov.br/i3geo/pacotes/rlib/win/spatstat/html/bei.html ) 

: Elevation over tropical rain forest plot :  

  Example of Covariate - Elevation

1
2

0
1

3
0

1
4

0
1

5
0

http://mapas.mma.gov.br/i3geo/pacotes/rlib/win/spatstat/html/bei.html
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By adding the location of trees, we can investigate 

 Is relative density of trees related to slope (i.e. changing elevation)? 

 After accounting for slope, is there evidence of clustering of trees? 

  

  Relationship of Covariate to Points

1
2

0
1

3
0

1
4

0
1

5
0
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Spatial Point Processes and R 
 
 
There are several dozen packages that analyze various kinds of spatial point 
processes.   You can read about these here : 
 
https://cran.r-project.org/web/views/Spatial.html  
 

You will want to load the package spatstat which deals specifically 

with point processes and is the main package we will use.  For 
information on this package, go to www.spatstat.org.  There are several 
documents that give an overview of the functions of this package.  You’ll 
also want the splancs package (an older point process package – 

PPP!) 
Functions in spatstat work on ppp objects.  Use the ppp() function to 

convert matrices, dataframs, polygons, etc. to this data type. 
 

Plots on previous pages created using this script : 
http://reuningscherer.net/fes781/rscripts/SpatialPPExamples.r.txt 

https://cran.r-project.org/web/views/Spatial.html
http://www.spatstat.org/
http://reuningscherer.net/fes781/rscripts/SpatialPPExamples.r.txt
http://cran.r-project.org/index.html
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What Qualifies as a SPP? 
(nice discussion in section 2.2 of Baddeley notes) 

  
YES : 

 Locations of disease cases 

 Location of trees 

 Locations of volcanos in Uganda 

 Locations of mineral deposits 
 
MAYBE : 

 Locations of accidents on city streets – tricky since can't 
have an accident that's not on a road – it's really a 'bent' 
linear process  

 Locations of a GPS tracker on a tiger hourly for a month – 
maybe not since this is really a continuous process with 
infrequent observations 

 Locations of nuclei in densely packed cells – centers can't 
be next to each other because of biological restrictions – of 
course the same might be said of trees . . .  
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Goal 1 : Random PP vs. Clustered / Systematic 

PP 

To have this discussion, we first have to decide what 
we mean by ‘random’! 
 

Complete Spatial Randomness  (CSR) 

 Events are equally likely to occur at any location within 

the defined region R 

 Knowledge of the boundaries of R is critical since we 
need to know where points did not occur! 
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 For a fixed number of events, this means that  

1) Events follow a UNIFORM distribution over the 

study region R :  

 

 

for all Ryx ),( , where R is the area of R 

NOTE : Since the area of R may vary widely, it’s 

sometimes more helpful to think that the average 

number of points per unit area is some fixed, 

constant  (lambda) : this number is called the intensity 

(also called the mean!) 

2) Events are independent 

 

R
yxf

1
),( 
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CSR serves as the ‘baseline’ for comparison of other point 
processes. 
 

 Clustered Process : events fall into clumped groupings 
 

 Regular Process : there are regular spatial intervals 
between events (i.e. if species are ‘pushing’ against each 
other by inhibiting growth at too close a distance) 

 
Here are some examples :   
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(R code is online as http://reuningscherer.net/fes781/rscripts/Simulated%20Spatial%20PP.r.txt) 
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http://reuningscherer.net/fes781/rscripts/Simulated%20Spatial%20PP.r.txt
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OK, so how do we model a CSR?  We need to discuss 
 

Isotropy and Stationarity 
 
Stationary Process : A process that is 
invariant to translation in space.  
Relationships between pairs of points 
depend only on their relative positions to each other. 
 
Isotropic Process : A process that is invariant 
to rotation in space.   

 
Stationary and Isotropic Process : 
Relationships between pairs of points 
depend only on the relative distance 
between points! 
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CSR and the Homogenous Spatial 
Poisson Process 
 

Recall that if a random variable X  has a 
Poisson distribution then 
 
 

 

Recall that )1)(2)..(2)(1)((!  xxxx  and e =2.718 

 

Poisson distributions are used to model the 
number of events per unit of space or time. 

 
 
If you do some infinite series expansions, you will find  
 

  ,...3,2,1,0for        
!

Pr   xe
x

xX
x


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Mean of a Poisson =      (no surprise here) 

 Variance of a Poisson =     (here's the surprise!) 
 
NOW :  A Homogenous Poisson Point Process is defined 
as follows : 
 

1) The random number of events X  in a finite region 

A has a Poisson distribution with mean A  where 

A  is the area of A and   is the intensity. 

 
Intensity : the number of expected events per unit area.  For 
a homogenous process, this is constant over the area. 
 

2) Given that a total of NX   events occur in A, the 
locations of the events are uniformly distributed 

across A 
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Homogeneous Poisson Point Process = CSR 

 
This means that for a CSR, while the observed number of 

points over a region R will vary from one realization to the 
next, the average (expected) number of points is the fixed 

quantity R . 

 
This definition shows how to generate a CSR : 
 

1) Generate a Poisson number of points NX   with 

mean R . 

2) Randomly assign locations for the N according to a 
uniform distribution 

 
See Gotway p.124 or Cressie p.634 for an equivalent 
definition of a homogeneous Poisson Point Process 
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The definition of a homogenous Poison PP means that is 
both stationary and isotropic! 
 

 
Spatial Point Processes in R.  Functions in spatstat work on 
ppp objects.  Use the ppp() function to convert matrices, 

dataframs, polygons, etc. to this data type. 
 
To generate a CSR (Homogenous Poisson PP) in R, use the 
rpoispp()function: 

#generate a CSR over the range (0,10) x (0,10) with mean 

1 per unit square 

pois1<-rpoispp(1,win=owin(xrange=c(0,10),yrange=c(0,10))) 

plot(pois1$x,pois1$y) 

 

http://cran.r-project.org/index.html
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Heterogenous Poisson Point 
Process 
 

 Under the homogeneous Poisson model, 

the intensity function   is constant. 
 

 For many processes, a constant risk hypothesis is too 
restrictive – the intensity varies over a region according 
to population, gradients, etc. 

 

 We define a heterogenous Poisson point process with 

intensity function )(s  (think mean), where s  is any 

point in our study region R, using the criteria 
 

1) The number of events in any region RA  has a 

Poisson distribution with mean A dss)(  
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2) Given that a total of NX   events occur in A, the 

locations of the events are a random sample of  N
events sampled proportional to )(s  

 
A heterogenous Poisson point process is non-stationary 
and anisotropic  (not the same if you move and/or rotate in 
space!) 
 
The following page shows realizations of three heterogenous 
Poisson point processes with different intensity functions 

)(s  :  
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First and Second Order Properties of a SPP 
 
We usually summarize a probability distribution by talking 
about the mean and variance.  There are analogues for a 
spatial point process 
 

First order Properties of a SPP : Intensity )(s  

 
Aside : Intensity vs. Density 
 

 Statisticians usually talk about a density function )(sf  over a region 

R . 

 Density functions always have total area (volume) = 1 

 Intensity functions do not integrate to 1 : they represent the mean 
number (expected number) of events per unit area.  However, the 
following is true :  

1)( R dssf
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)(
)(

)(
sf

dss

s

R



 


 

 
I.e. you can convert between intensity functions and density functions! 
 
Second order Properties: measures relationships 
between pairs of points 
 

 
SO : Let’s say you observe a point process.  How 

do we estimate the intensity function )(s ? 

 

Goal 2 : Estimating Intensity Functions 
 

  

“Percentage per area” 
“Count per area” 
 
“Total Count” 
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Quadrat Method :  (example from Kate Beard) 

 

1) Place a grid over the region R of interest 

2) Count the number of points in each cell 
 
 
 3 3 3 3 3 1 0 

4 6 6 4 2 1 1 

4 4 3 3 2 2 0 
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3) Convert to estimated intensity )(ˆ s  

(assuming each cell is 4 square units) 
 
 
 
 
 
 
 
  

.75 .75 .75 .75 .75 .25 0 

1 1.5 1.5 1 .5 .25 .25 

1 1 .75 .75 .5 .5 0 
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4) (optional)  Make a density picture to see where points 
tend to lie 
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Issues with quadrat estimation : 
  

 Converts real data to an area value : there is a loss of 
spatial detail 

 Quadrat size : 

o If quadrat is too small, we’ll get mostly 
empty cells and cells with spikes 

o If quadrat is too large, all quadrats will 
likely have same value and we’ll loose any features 

o ESRI  Guide (p.82) suggests that a good size is  

N

R
I 2               where  

I    is the length of the side of the quadrat 

R  is the size of the study area 

N   is the number of events observed in R 
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Quadrat Estimation in R.  Use the function 
quadratcount()which gives the raw counts in each 

quadrat of the size you specify.  This requires that your data be 
a ppp object.  The function image() can be used to visually plot the 

result of these quadrats.  However, you may prefer to simply add the 
numeric results of the quadrat counts to an existing point process plot.  
The first quadrat is the ‘optimal’ quadrat size, the other use a 5x5 and 
15x15 grid.  Link : http://reuningscherer.net/fes781/rscripts/quadrat.r.txt  
 
 

http://reuningscherer.net/fes781/rscripts/quadrat.r.txt
http://cran.r-project.org/index.html
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Example : Uganda Volcano Locations.  This 
da taset has the locations of 120 volcanoes in 
the Bunyaruguru volcanic field in west Uganda. 
Below are the results of quadrat estimation for 
various grid sizes.  R code is also in the file 
quadrat.r.txt, data files are in ugdat.dat (crater 

locations) and ugpoly.dat (polygon of Uganda) 

  

http://reuningscherer.net/fes781/rscripts/quadrat.r.txt
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Example : Juvenile Offenders in Cardiff.  This 
dataset has the locations of homes of juvenile 
offenders living in a housing area in Cardiff, Wales 
in 1971. R code is also in the file 
quadrat.r.txt, data files are in carddat.dat (house 

locations) and cardpoly.dat (polygon of area).  Data from 

Melvin Hooten at Utah State U. 
 
  

http://reuningscherer.net/fes781/rscripts/quadrat.r.txt
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Non-square Quadrats  (Baddeley, section 13.2) 

 
There is no particular reason quadrats have to be 
rectangles/squares.   The only real requirement is that the 
regions have equal areas. 
 
Baddeley suggests using a potentially related covariate to 
create quadrats of equal area by dividing the region 
according to quantiles of the covariate.  Then, perform 
quadrat counts in each quantile 
 
Example : Tropical Rainforest Data (bei).   We divide 
slope into 8 quantiles and use the resulting tessellated plot 
to define 8 quadrats.   A plot with tree locations suggests 
that tree location and slope may be related.   Quadrat counts 
show that counts clearly differ with slope quantiles 
(otherwise, counts would all be approximately the same) 
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FES781b Spatial Point Processes : JDRS 41 

Kernel Smoothing 
 
 
Kernel Smoothing is a quick way to estimate an 
intensity (or density) function based on a point process. 
 
Here is the basic idea :  

 Choose a kernel (a small probability blob, a bit of 
putty)  

o Often a bivariate normal distribution 

o Also, Uniform (constant height), and Triangle, Tri-
weight, etc  

 Choose a radius (basically, how much to spread around 
the influence of each observation – small radius equals 
local influence only, large equals wide influence).  This is 
often called the bandwidth. 

http://www.nuim.ie/academic/spanish/Sombrero.gif
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 Put kernel on each observed event. 

 Get the averaged 
probability on all desired 
grid points based on 
probability blobs 

 This gives a non-
parametric estimate of 
the density/intensity 
function. 

 

Math : Mathematically, a kernel intensity estimate  at a 
particular point s  is  
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



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

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ss

b
s

1
2

kernel
1

)(̂  

where  

b  is the bandwidth 

is  are the observed event locations 

kernel( ) is the kernel function being used. 

Often, a kernel density estimate is used instead : 











 


N

i

i

b

ss

Nb
sf

1
2

kernel
1

)(ˆ  

 

SO : Kernel smoothing requires two choices : kernel and 
bandwidth 
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Kernels 

Lots of possibilities – here are some common ones 

 

Uniform  

  

otherwise0

 
1

)(kernel 2







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
bss

bs i
  

 

Gaussian / Normal 

   

2
2/1

2

1
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ii
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ssΣss
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
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
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
 

b 
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(the covariance matrix incorporates the bandwidth b) 

 

Quartic (bi-weight) 

 
  

otherwise0

 )(
3

)(kernel
2










bssssb

s ii
  

(basically, a Gaussian-like kernel that gets truncated to 
make computation easier) 

 

In practice : the choice of kernel has little effect on 

the final result.  Much more important is the  
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Bandwidth 

Small bandwidths make spiky estimates of )(ˆ s  (with 

spikes on the observations) 

Large bandwidths tend to make everything look uniform 
and can smooth out interesting features 

Example from Kate Beard’s Notes :  
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Note – there are several recent papers (two online in materials folder) 
discussing Adaptive Kernel Smoothing, where the bandwidth changes 
depending on the density of observations (i.e. wider bandwidth if there are 
few points in a region) 
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where  isb  the bandwidth is now a function that depends on the 

presence of other events in the neighborhood of is
. 

 

 
Kernel Smoothing in R.  There are many functions for kernel 
smoothing in R.  An older function is ksmooth() which was replaced 

by density().  In the spatstat package, there is a function 

density.ppp().  density() allows for several types of kernels while 

density.ppp() uses only Gaussian kernels.  The function kernel2d() in 

the splancs package also works nicely.  Also, there is a new package called 
spatialkernel (about a year old), AND another package simply called ks.   

 
To see the results of your smoothing, you can use persp(), contour(), or 

image().  I’ve put the code for all the plots on the following pages online as 

kernelsmooth.r.txt.  Link : http://reuningscherer.net/fes781/rscripts/kernelsmooth.r.txt   

 
The next page contains kernel smoothed images of our three heterogenous 
Poisson point processes for several bandwidths (all use Gaussian kernel) 

http://reuningscherer.net/fes781/rscripts/kernelsmooth.r.txt
http://reuningscherer.net/fes781/rscripts/kernelsmooth.r.txt
http://cran.r-project.org/index.html
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Same thing but with contour plots : 
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Example : Uganda Volcano Locations.  R 
code is also in the file kernelsmooth.r.txt 

Notice that as the bandwidth increases, the plot 
gets smoother (eventually too smooth!) 
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http://reuningscherer.net/fes781/rscripts/kernelsmooth.r.txt
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Same idea, but with contour lines:
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Example : Juvenile Offenders in Cardiff.  R 
code is also in the file kernelsmooth.r.txt 
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http://reuningscherer.net/fes781/rscripts/kernelsmooth.r.txt
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Goal 3 : Second Order Properties of a SPP : 

Relative Position / Relationships between events 
 
Several measures exist : Nearest neighbor methods (G, F).  
However, most common / popular is  

 
Ripley’s K-function 
 Known as the K-function or reduced second moment 

measure (Ripley 1977, Diggle 1983),  

 Defined as   
 
 

 
event) randoma  of  withinevents(#

)(


 hE
hK   

 

for all positive distance (spatial lag) h  

E( ) means Expected Value (i.e. average) 
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Ripley (1977) showed that  )(hK is equivalent to calculating 

the Variance of the number of points in any subregion A 
 
 

So, what should  )(hK  look like? 

 

CSR :   )(hK =  πh2
 (Area within h  of any point is just 

 πh2
, intensity is a constant  , so expected number of 

events is 
2hA   ) 

Regular :   )(hK <  πh2
for h  less than regularity interval 

Clustered :  )(hK >  πh2
 for h  less than cluster size 
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Estimating  )(hK   (i.e. how to calculate   )(ˆ hK ) 

 
Basically, replace expectation with AVERAGE : 
 

 )),((
ˆ

1
)(ˆ

1 1








N

i

N

ij
j

hjidI
Nλ

hK  

 

where   I is the indicator function :  

 

and 
R

N
λ ˆ   (number of points divided by size of region) 

 

Basically,  )(ˆ hK is just an average of the number of 

points within h of each observed event. 

 


 


otherwise

hjid
I

0

),(1
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Problem : what to do when we hit the edge? 
 

When h  contains area outside our study 

region, we will underestimate  )(hK .   

 
 
Common corrections : 
 
1) Boundary Correction : only compute 

 )(hK using events that are 

completely within 
*h  of the edge, and 

only compute  )(hK for h <
*h   

 
 
  

*h
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2) Edge Correction :  
 

 )),((
ˆ

1
)(ˆ

1 1








N

i

N

ij
j

ij hjidI
λ

hK   

 

ij  is amount of circle at point iwith radius ),( jid  that is 

within the study region R  
 
 
1) Taurus Correction : I won't give 

equation here, but I'll describe the 
idea (it's a wrapping thing) 

 
R calculates several others . . . . 
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Plots using  )(hK  

 

 Under CSR,  )(hK =  πh2
which is a parabola! 

 

 It would be easier to note departures from CSR if what 
was ‘normal’ was a straight line (not a parabola) 

 SO : a plot of  h  versus h
hK




 )(ˆ
 should be a flat 

line at zero! 

 Sometimes defined as the h
hK

hL 


 )(ˆ
)(ˆ  

function  (Ripley, 1979) 
 

SO : If )(ˆ hL  looks like a line, our process shows CSR.  If 

not . . ..  
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Simulated Bounds for )(hL  

 
It is possible to use a Monte Carlo simulation to estimate 

bounds for )(hL  

1) Generate a CSR of N events over the study region R . 

2) Calculate )(hL  

3) Repeat 1) and 2) a ‘bunch of’ times : maybe 100, maybe 

1000.  Note however that )(hL  is computationally 

expensive. 

4) Use the randomly generated bounds to compare )(hL  

for the observed spatial point process. 
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Ripley’s K in R.  The spatstat package uses the 

functions Kest()to calculate Ripley’s K-function with various 

corrections.  The function envelope() does the Monte 

Carlo simulation of the bounds for  )(hK . There is a function called 

Lest(), but it doesn’t subtract h, so the result is a line at 45 degrees.  

SO : I’ve written a modest (and improvable) function in Lfunction.R 

called L().  It requires as inputs the outputs from envelope() and 

Kest().  Also, I put in a similar function called Kplot().  All 

functions are in the file : 
http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt  

 
The plots on the next page show the functions )(hK  and  

)(hL  for several simulated point processes  - code is here : 

http://reuningscherer.net/fes781/rscripts/lfunction.r.txt  
  

http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt
http://reuningscherer.net/fes781/rscripts/lfunction.r.txt
http://cran.r-project.org/index.html
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Finally, here is )(hL  for the volcano and delinquency data!  

In both cases, it appears that these are clustered processes, 
although for the volcano data, at distances less than 50 
meters, it appears to be a regular process (no volcanos on 
top of each other) 
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Clustering – Mean or Variance? 
 
A challenge throughout spatial stats is deciding what patterns 
are due to spatial correlation, and what patterns are due to 
changing mean.  Here is the L-plot (which shows clustering) 
when applied to the example where the mean increased from 
lower left to upper right.  
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So Far :  
1) Investigated first order properties of spatial point 

processes (i.e. mean/average) 
2) Compared means to a completely spatially 

random process (CSR) 
3) Began to investigate second order properties of 

SPP’s (Ripley’s )(hK  / )(hL  functions) 

 

Note that Ripley’s )(hK  function is an expected value of 

the number of points within a distance h of an observed 
point.   
 
Before we move on, another . . .  
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Example : Maine Tree Data.  This is data Tim 
collected on different species at a site in Maine – the 
location of each instance of 7 tree species was noted 
over a rectangular region.   
 

Here are a couple of examples of species, the )(hL  function, and the result of 

a kernel smoothing.  Clustering is evident, especially for White Pine.  Code is 
online as first part of  GandFFunctions.R.txt  Link : 

http://reuningscherer.net/fes781/rscripts/gandffunctions.r.txt  

http://reuningscherer.net/fes781/rscripts/gandffunctions.r.txthttp:/reuningscherer.net/fes781/rscripts/gandffunctions.r.txt
http://reuningscherer.net/fes781/rscripts/gandffunctions.r.txt
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Ripley’s )(hK  / )(hL  functions examine the estimated 

number of points expected at fixed distances around an 
observed location.  However, many other methods were 
originally created to investigate second order properties of 
spatial point patterns using . . . . 
 
Nearest Neighbor Methods 
 
Used to investigate second order properties of a PP.  
However, first we need to discuss 
 

 
Nearest Neighbor Distances : two 
types 
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W-event : distance from an event to the nearest event.  For a 

set of N  events, these are the values  Nwww ,..., 21 . 

 
X-event : distance from a randomly-chosen non-event 
location to the nearest event. For a randomly selected set of 

M locations, these are the values  Mxxx ,..., 21 . 
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We can use these events to define functions which estimate 
the distribution of nearest neighbor distances. 

 

G-function 
 

)(rG  is defined as 

 

)event)nearest  event to random(Pr()( rDistrG 
 
This is the cumulative probability distribution of nearest 
neighbor distances between events. 
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We estimate this function with  

N

rwI

N

rw
rG

N

i
i

i









 1

)(
)(#

)(ˆ  

where (.)I  is the indicator function = 1 if true, 0 otherwise. 

Basically, this is the percent of observed nearest neighbor 

distances that are less than r  
 

Note that )(rG = 0 when r  = 0, and )(rG = 1 as r  

 
 

NOW : if we have CSR, what should )(rG  be?  Matern 

(1971) showed that under CSR  (in 2-dimensions), 
 

0       ,1)(
2

  rerG r
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Reason : 

1) Assume we have CSR which means that the number of 

points in some area A has a Poisson distribution with 
some mean   per unit area – or mean A  in an area 

of size A. 

2) Recall that for a Poisson distribution, the probability of 

having x  events in area A is  

  ,...3,2,1,0for        
!

Pr   xe
x

A
xX A

x

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3) This means that the probability of having no events 
within radius r  of any location is  

Pr(N. Neighb. is more than r  units away) 

=  
  22

!0
0Pr

02
rr ee

r
X     

4) SO : This means that 

Pr(N. Neighb. is LESS than r  units away) 

2

1)( rerG   

 

This can be used for comparison of )(ˆ rG  which is typically 

plotted vs. r . 
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Problem : what to do when we hit the edge? 
 
When r  contains area outside our study region, we 

overestimate )(rG  (nearest neighbor might be outside study region)   

 
Common corrections : 
 
1) Boundary Correction : only compute 

 )(ˆ rG using events that are completely 

within 
*r  of the edge, and only compute 

 )(ˆ rG for r<
*r   

 
2) Edge Correction : R uses Kaplan-Meier correction for the 

edge effect.  

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for 
spatial point processes.    Annals of Statistics , 25,  (1997) 263-292. 

 
Cressie (p.614) lists other corrections. R provides 5 corrections by default. 

*r
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Simulated Bounds for )(rG  

 
It is possible to use a Monte Carlo simulation to estimate 

bounds for )(rG  

1) Generate a CSR of N events over the study region R . 

2) Calculate )(ˆ rG  

3) Repeat 1) and 2) a ‘bunch of’ times : maybe 100, maybe 

1000.  Note however that )(ˆ rG  is computationally 

expensive. 

4) Use the randomly generated bounds to compare to )(ˆ rG  

for the observed spatial point process.   
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G in R  (Grrr…).  The spatstat package uses the function 

Gest()to calculate )(rG with various corrections.  The 

function envelope() with option fun=Gest does the 

Monte Carlo simulation of the bounds for )(rG .  You can use plot() 

to plot the result of Gest().  However, this doesn’t make the plot with 

the envelopes.  SO : I’ve written a small function to do this called G().  

Link : http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt  It 
requires as inputs the outputs from envelope() and Gest(). 
 

Examples below : 
http://reuningscherer.net/fes781/rscripts/GandFFunctions.R.txt  
 

The plots on the next page show the function )(ˆ rG  for 

several simulated point processes.  Note that as we would 

expect, )(ˆ rG  is unusually high for clustered processes and 

unusually low for regular processes. 
  

http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt
http://reuningscherer.net/fes781/rscripts/GandFFunctions.R.txt
http://cran.r-project.org/index.html
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Example : Uganda Volcano Locations and Cardiff 
Delinquency Data.  Below are the results of the G-function 
with simulation envelopes.  Both indicate some clustering at 
smaller distances, although there appears to be greater separation at very 
short distances in the volcano data (less than 50 km) – similar to what we 
saw using the L-function 
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Example : Maine Tree Data.  This is data Tim collected on 
different species at a site in Maine.  For All trees and for 
Hemlock and Red Maple, clustering is evident.  (most 
prominent for the red maple). 
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F and J  functions 
 

)(rF  is defined as 

 

)event)nearest   tolocation random(Pr()( rDistrF 
 
This is the cumulative probability distribution of nearest 
neighbor distances from a random point to an event. 
 
We estimate this function with  

M

rxI

M

rx
rF

M

i
i

i









 1

)(
)(#

)(ˆ  
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where M is a random sample of non-event locations and 

(.)I  is the indicator function = 1 if true, 0 otherwise. 

 
 

NOW : we* can define the function )(rJ  :  

 

)(ˆ1

)(ˆ1
)(ˆ

rF

rG
rJ




  

 

 

*Van Lieshout, M.N.M. and Baddeley, A.J. A nonparametric measure of spatial interaction in 
point patterns. Statistica Neerlandica  50 (1996) 344-361. 
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SO : if we have CSR, what should )(rF  be?  Turns out that  

under CSR  (in 2-dimensions), 
 

0       ,1)()(
2

  rerGrF r
 

 
which means that for a CSR process 

 

1)( rJ  

 
Edge corrections and simulation boundaries – same 

methods apply to )(rF (and )(rJ  ) as used for )(rG  
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F and J in R  (where’s H?).  The spatstat package uses 

the function Fest()and Jest()to calculate )(rF and 

)(rJ with various corrections.  The function envelope() 

with option fun=Fest or Gest does the Monte Carlo simulation of the 

bounds for )(rF and )(rJ .  You can use plot() to plot the result 

of Fest()and Jest().  I wasn’t so crazy about the plots, so I wrote 

an Ffunc() function.  For Jest, see code in same file which produces 

the graphs below.  The help function in R gives references of papers 

exploring the properties of )(rJ .  Link : 

http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt   
 
Examples below : 
http://reuningscherer.net/fes781/rscripts/GandFFunctions.R.txt  
 
 

 
  

http://reuningscherer.net/fes781/rscripts/SpatialPPFuncs.R.txt
http://reuningscherer.net/fes781/rscripts/GandFFunctions.R.txt
http://cran.r-project.org/index.html
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What does all of this suggest?!?!!? 
 

 
Clustered Processes : 
 

 )(ˆ rG  tends to increase to 1 more rapidly 

than the expected value of )(rG  under CSR. 

 

 )(ˆ rF  tends to increase to 1 more slowly 

than the expected value of )(rF  under CSR. 

 

 
)(ˆ1

)(ˆ1
)(ˆ

rF

rG
rJ




  0

1

1















small

big
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Regular Processes : 
 

 )(ˆ rG  tends to increase to 1 more slowly 

than the expected value of )(rG  under 

CSR. 
 

 )(ˆ rF  tends to increase to 1 more rapidly than the 

expected value of )(rF  under CSR. 

 

 
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Inference for Spatial Point Processes 

We start by talking about  

 
 

Hypothesis Testing 
 
 

 Goal : perform hypothesis tests relating to the 
distribution of an observed spatial point process. 

 
Example :  you’d like to see if a stand of trees or a set 
of leukemia cases is more clustered than you ‘would 
expect at random (?!?)” 

 

 Challenge is to form reasonable null and alternative 
hypotheses 
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CSR as a null hypothesis 

 A variety of statistics have been developed to calculate 
the probability of observing a particular spatial process 
if the underlying process is CSR. 

 Most statistics involve Nearest Neighbor calculations 

based on either  NwwwW ,..., 21  or 

 MxxxX ,..., 21 .   
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Aside : (see Cressie p. 602-605 if you want 

to see the proofs) 

 

Theoretical distribution of W and X : 

 Under CSR, 
2

2

2 ~2 X  

 This ‘means’ that  

2

1
)( XMean              

 





4

4
)(


XVar  

 

(true for both W and X )  
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Clark and Evans (1954) 

Test statistic is  
  



n

w
n

z

n

i
i























4

1
ˆ2

1

 

 

where 
 

  Regionof Size

 Events#ˆ 
R

N
  is the usual estimate of 

the intensity. 
 

Under CSR, it can be shown that )1,0(~ Nz  as long as the 

number of eventsN  is larger than 10. 
  
For a regular process, z will be large positive; for a clustered 
processs, it will be large negative.   
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Cressie describes several dozen other statistics developed in the past 

50 years based on the distribution of W and X .  The table below 
(Cressie, p. 604) lists a number of these statistics : 
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Nearest Neighbor Statistics in R.  In the spatstat 

package use the function clarkevens.test to calculate 

the Clarke Evans statistic.  I haven't found any other of the 
statistics listed above so far.  SO – project for you if you're interested!   
 

 

 
Example : See  

http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt 

 
  

http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt
http://cran.r-project.org/index.html
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Quadrat Count Test for CSR 
 

 When we create quadrat counts, we create equal sized 
regions that should all have about the same number of 
counts 

 We can compare the number of counts in each 'cell' to the 
expected count in each cell under CSR using a Chi-
Square Test! 

 Problem – the number of cells is again somewhat 
arbitrary (i.e. grid size). 

 Problem – this method may fail to detect departures from 
CSR (i.e. clustering or regularity) if mean still stays 
constant 

Example : See  

http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt 

http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt
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Examples : CSR simulated data 
 
Clark-Evans test No edge correction 

Z-test 

 

data:  CSR.ppp 

R = 0.97321, p-value = 0.6084 

alternative hypothesis: two-sided 

(z-stat : -0.1631077) 

 

Chi-squared test of CSR using 

quadrat counts  Pearson X2 

statistic 

 

data:  CSR.ppp 

X2 = 11.36, df = 15, p-value = 

0.5466 

alternative hypothesis: two.sided 

 

Quadrats: 4 by 4 grid of tiles 

  

  CSR.ppp

10 9 7 7

4 4 8 5

6 4 7 2

9 5 6 7

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

1.5 1.1 0.3 0.3

-0.9 -0.9 0.7 -0.5

-0.1 -0.9 0.3 -1.7

1.1 -0.5 -0.1 0.3



FES781b Spatial Point Processes : JDRS 102 

Examples : Grid simulated data.   Fails to reject null 
hypothesis  (whereas Clark Evans did reject) 
 
Clark-Evans test No edge correction 

Z-test 

 

data:  grid.ppp 

R = 2.2222, p-value < 2.2e-16 

alternative hypothesis: two-sided 

(z-stat : 7.442666) 

 

Chi-squared test of CSR using 

quadrat counts  Pearson X2 

statistic 

 

data:  grid.ppp 

X2 = 8.16, df = 15, p-value = 

0.1656 

alternative hypothesis: two.sided 

 

Quadrats: 4 by 4 grid of tiles

  grid.ppp

9 6 6 9

6 4 4 6

6 4 4 6

9 6 6 9

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

1.1 -0.1 -0.1 1.1

-0.1 -0.9 -0.9 -0.1

-0.1 -0.9 -0.9 -0.1

1.1 -0.1 -0.1 1.1
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Examples : Clustered simulated data.  Does reject null 
hypothesis. 
 
Clark-Evans test No edge correction 

Z-test 

 

data:  Clust.ppp 

R = 0.46289, p-value < 2.2e-16 

alternative hypothesis: two-sided 

(z-stat : -3.270713) 

 

Chi-squared test of CSR using 

quadrat counts  Pearson X2 

statistic 

 

data:  Clust.ppp 

X2 = 117.6, df = 15, p-value < 

2.2e-16 

alternative hypothesis: two.sided 

 

Quadrats: 4 by 4 grid of tiles

  Clust.ppp

8 0 12 25

14 0 6 7

8 0 10 0

0 0 1 9

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

6.2 6.2 6.2 6.2

0.7 -2.5 2.3 7.5

3.1 -2.5 -0.1 0.3

0.7 -2.5 1.5 -2.5

-2.5 -2.5 -2.1 1.1
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Examples : Uganda Volcano Data.  Does reject null 
hypothesis. 
 
Clark-Evans test No edge correction 

Z-test 

 

data:  ugppp 

R = 0.69198, p-value = 1.082e-10  

alternative hypothesis: two-sided 

(z-stat : -2.054719) 

 

 

Chi-squared test of CSR using quadrat 

counts  Pearson X2 statistic 

 

data:  ugppp 

X2 = 159.2, df = 15, p-value < 2.2e-16 

alternative hypothesis: two.sided 

 

Quadrats: 4 by 4 grid of tiles 

  

  ugppp

0 0 4 20

0 5 26 8

6 25 14 0

6 4 2 0

7.5 7.5 7.5 7.5

7.5 7.5 7.5 7.5

7.5 7.5 7.5 7.5

7.5 7.5 7.5 7.5

-2.7 -2.7 -1.3 4.6

-2.7 -0.91 6.8 0.18

-0.55 6.4 2.4 -2.7

-0.55 -1.3 -2 -2.7
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Simulation Envelopes for )(rK , )(rL , )(rG , etc.  

 The plots we’ve produced for )(rK , )(rL , )(rG , and 

)(rF  have all had simulation envelopes 

 These envelopes are created by generating say, 99 
CSR processes with the same number of events as the 
observed process.   

 The various functions are calculated 
for the simulations and the functions 
are plotted vs. r  

 The convex hull (the outside upper 
and lower boundaries) provide the 
simulation envelope boundaries 
(example at right is 99 simulations 

of )(rG  for a CSR with 100 events) 
0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0
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 This means the envelopes are in a sense a (in example 
case 99%) Confidence Region. 

 Major deviation of the observed function from the 
simulated function indicates a significant departure 
from CSR 
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Example : Tropical Rainforest Data (bei in spatstat 
package).   We divide slope into 8 quantiles and use the 
resulting tessellated plot to define 8 quadrats.   A plot with 
tree locations suggests that tree location and slope may be 
related.   Quadrat counts show that counts clearly differ with 
slope quantiles (otherwise, counts would all be 
approximately the same).   We can perform same chi-square 
test based on these 8 divisions. 

 
Chi-squared test of CSR using quadrat counts 

        Pearson X2 statistic 

 

data:   

X2 = 669.07, df = 7, p-value < 2.2e-16 

alternative hypothesis: two.sided 

 

Quadrats: 8 tiles (levels of a pixel image) 
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http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt

  V

1
2

3
4

5
6

7
8

124
147

513

471

516

512

628 693

450.4
450.6

450.4

450.6

450.4

450.6

450.4 450.6-15
-14

2.9

0.96

3.1

2.9

8.4 11

http://reuningscherer.net/fes781/rscripts/CSR_Tests.r.txt
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Multiple Groups – Marked 
Point Processes 
 
For an EXCELLENT overview of spatial point processes 
through the SPATSTAT package see Adrian Baddeley's 
notes  http://www.csiro.au/resources/pf16h.  See Part VII, 
p. 177ff for Marked PP. 
 
For a good overview of ALL functions available in 
SPATSTAT see the Quick Reference Card here : 
http://spatstat.org/spatstat/  

 
 

 Sometimes point processes are actually combinations of 
individuals in several groups 

 

Example : Cases and Controls, or the Maine Tree Data 
where multiple species are present 

http://www.csiro.au/resources/pf16h
http://spatstat.org/spatstat/
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 Each point is said to be MARKED – i.e. we have a marked 
point process 

Aside – As we mentioned in lecture 1, a process can be marked 

by a categorical OR a continuous variable (for example, tree 

locations could be 'marked' by their corresponding diameter).  

For the moment, we'll assume a process is marked by a 

categorical variable (i.e. group membership) 

 We'll discuss both two point processes and multiple point 
processes, and we'll discuss comparing density estimates 
as well as multi-group versions of the F, G, K, J , L 
functions. 

 We start with two-groups, sometimes called  
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Case-Control Processes 
 

 For many point processes, CSR is NOT 
the  appropriate null hypothesis 

Example : events will appear to be not CSR simply because 
the events follow a heterogenous Poisson PP that mirrors, 
say, population.  For example disease or crime events will 
simply follow the population distribution; or multiple tree 
species simply group by more favorable soil/climate 
conditions. 

 In this case we need to ‘correct’ for the underlying intensity 
function 

 Another way to think about this : we have a set of CASES 
and CONTROLS and we want to see if they follow the 
same underlying intensity function 
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Ratio of Kernel Intensity Estimates  
 
 The basic idea is to compare the intensity function 

of ‘cases’ to that of ‘controls’ 
 

 This comparison is done by computing a kernel intensity 

estimate for each group over the SAME region R . 
 

 A ratio of estimates is then calculated and plotted. 

 

NOTE : this method requires that the intensity functions 

be normalized (i.e. standardized) to have total area under 

the curve = 1.  That is, we use density functions rather 

than intensity functions in the ratio. 
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 The ratio of density functions is the local Relative Risk at 

each point s  in R . 
 

 Locations where the Relative Risk is much larger than 
1 or much less than 1 indicate areas where the density 
functions disagree. 

 

 In practice, the success of this method is dependent on the 
bandwidth size of the kernel chosen. 

 

 Waller and Gotway also suggest looking at the log(relative 
risk) surface as a means of comparison of density functions 
(since this means that ratios become subtracted differences 
– log of ratio = difference of logs . . . .) 
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Example : Two random CSR processes, one with 100 
observations, the other with 50 observations.  I tried several 
kernel bandwidths and decided on a bandwidth of 2.  The 
intensity functions of each group show no real patterns and 
the ratio of intensity functions is never more (or less) than 
1.5 : 1 suggesting that the distributions are relatively similar. 
 
http://reuningscherer.net/fes781/rscripts/kernelratios.r.txt  

 

http://reuningscherer.net/fes781/rscripts/kernelratios.r.txt
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Example : Maine Stand data.  Lets examine the relative 
distribution of two species in Tim’s Maine data : paper birch 
and white pine.  It appears that these species are clustered 
within groups and away from each other.  Several kernel 
bandwidths were tried : I choose sigma=70. 
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The plot below shows the ratios of the intensity functions (I did 
both paperbirch vs. white pine and the reverse).  There are 
regions in both cases where the relative risk is on the order of 4 
to 5 times that of the other species.  This suggests that these 
species are ‘moving around’ each other. 
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Ratios of Kernel Densities in R.  The plots above were 

created with the code online as KernelRatios.R.txt  

This uses the function density.ppp(), but you could 

easily modify to use the density() function is you like.  
http://reuningscherer.net/fes781/rscripts/kernelratios.r.txt  

 

The spatstat package actually has some nice ways of doing this now 

–Script is MarkedSPP.R.txt 
  http://reuningscherer.net/fes781/rscripts/markedspp.r.txt  
 
The ratio of density estimates in this method is expressed as relative 
probabilities rather than relative risk.  However, the interpretation is similar 
 

) Group(

) Group(

) GroupPr(

) GroupPr(
Risk Relative

jIntensity

iIntensity

j

i
  

 

http://reuningscherer.net/fes781/rscripts/kernelratios.r.txt
http://reuningscherer.net/fes781/rscripts/markedspp.r.txt
http://cran.r-project.org/index.html
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) GroupPr() GroupPr(

) GroupPr(
) Groupn rather tha  GroupPr(

ji

i
ji


  

 
For example, suppose that at a particular location (x,y), there 
is a 10% chance of seeing a white pine, and a 30% chance 
of seeing a cedar.   
 

The relative risk of cedar to white pine is 3
1.

3.
  

The probability of seeing cedar rather than white pine is 

75.0
4.

3.
  (i.e. if a tree does occur at location (x,y), it is 3 

times as likely to be cedar than white pine). 

Examples : Maine Tree Data, Two  CSR's, a CSR and a 
clustered process, etc.
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Return of the Alphabet Soup 
(for two groups) 

      
Let's suppose we have two spatial point processes, each 

with separate (constant) intensity functions 
1  and 

2 .  Our 

various alphabet functions become a bit more complicated 
with two groups : 
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With one group, we defined G as 
 
 
 

)event)nearest  event to random(Pr()( rDistrG 
 
We can now define two separate G functions :  
 

)event) 2 groupnearest  event to 1 group rnd(Pr()(12 rDistrG 

 
)event) 1 groupnearest  event to 2 group rnd(Pr()(21 rDistrG 

 
These functions differ in which group serves as the 
'reference' group. 
 
If each group is a CSR process, then as before we have  

0       ,1)()(
2

)21(

2112 


rerGrG
ror 
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We estimate this function with  

1

1
2

1

2
12

1

)(
)(#

)(ˆ
N

rwI

N

rw
rG

N

i
i

i

 



   

 

where 1N  is the number of observations in group 1, 2iw  is 

the distance from the ith point in group 1 to the nearest point 

in group 2, and  (.)I  is the indicator function. 

 
Basically, this is the percent of observed nearest cross-

group neighbor distances that are less than r  
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)(rF  was defined as 

 

)event)nearest   tolocation random(Pr()( rDistrF   

For two groups, this is not particularly interesting (since it 

basically means we're fitting two separate )(rF  functions, 

one for each group (i.e. groups aren't affecting each other):  
 

)event) 1 groupnearest  olocation t rnd(Pr()(1 rDistrF   

)event) 2 groupnearest  olocation t rnd(Pr()(2 rDistrF   

 
 
If each group is a CSR process, then as before we have  

0       ,1)()(
2

)21(

21 


rerFrF
ror 
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I'll leave details of how to estimate this function.  R can 

calculate this function (the Fcross() function in the 

spatstat package ) 

 

Two different  )(rJ  functions can also be calculated :  

 

)(1

)(1
)(

2

12
12

rF

rG
rJ




   and 

)(1

)(1
)(

1

21
21

rF

rG
rJ




  

 
Again, I'll leave details of how to estimate this function.  R 

can calculate this function (the Jcross() function in the 

spatstat package ).  Like F, I'm not sure this is so useful . 

. . 
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Ripley’s Bivariate K-function 
 
Before, we defined K as   
 

 
event) randoma  of  withinevents(#

)(


 hE
hK   

 
For two groups, we now define 
 

 
event) 1 group random a of  within2 groupin  events(#

)(
2

12


 hE
hK   

 
event) 2 group random a of  within1 groupin  events(#

)(
1

21


 hE
hK   
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If both groups are CSR :   

)( )( 2112 hKhK  =  πh2
as before. 

 
 
K is estimated as follows : 
 
 

 )),((
ˆ

1
)(ˆ

1 2

1 1
212

12   
 

N

i

N

j

hjidI
NNλ

hK  

 

where   I is the indicator function  and 
R

N
λ 2

2
ˆ    (number 

of points in Group 2 divided by size of region) 
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Basically,  )(ˆ
12 hK is just an average of the number of 

points in group 2 within h of each observed event in 

group 1. 
 
 

   


)(
 )( 12

12

hK
hL     and  



)(
 )( 21

21

hK
hL   

 
(Note that before, I subtracted h so that this would be a flat line at 

zero.  The spatstat package doesn't do this, and I haven't written a 

new function yet – SO, just be aware that this looks like a line with slope 1 
under CSR ) 
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 Bivariate Comparison Functions in R.  In the script 
MarkedSPP.R.txt are a few examples of bivariate functions 
  http://reuningscherer.net/fes781/rscripts/markedspp.r.txt  

 

The R bivariate functions are Gcross, Kcross, Lcross, and 
Jcross 

 

Each of these functions can be used in the envelope function to get 
randomized 'confidence bands' as a function of distance. 

 

http://reuningscherer.net/fes781/rscripts/markedspp.r.txt
http://cran.r-project.org/index.html
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Ratio of Kernel Intensity Estimates for 
MORE than two groups  
 
 The basic idea is to compare the intensity function of 

‘cases’ to ALL OTHER GROUPS COMBINED. 
 

 This comparison is done by computing a kernel intensity 

estimate for each group over the SAME region R . 
 

 A ratio of estimates is then calculated between a particular 
group and ALL OTHER COMBINED GROUPS and is then 
plotted. 
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Ratios of Kernel Densities in R.  In the script MarkedSPP.R.txt 
are a few examples of multiple group kernel density estimates. 
  http://reuningscherer.net/fes781/rscripts/markedspp.r.txt  

 
discussed in class . . . . . 
 

http://reuningscherer.net/fes781/rscripts/markedspp.r.txt
http://cran.r-project.org/index.html
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Still MORE Alphabet Soup 
(for more than two groups) 

  
Example : more than two observed tree species 
 

Notation – OK, we're in a bit of trouble cause almost every 

letter is used now, but we'll say we have lower case g 

groups, and let a and b be any two particular groups amongst 

the g groups. 

     
FIRST COMMENT :  If you want to examine bivariate 

relationships between two particular groups (say a  and b ), 
then just see previous 4 pages and replace 1 and 2 with say 
a  and b , and you're good to go . . . 
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SECOND COMMENT :  Suppose instead you want to 
examine relationships between a particular group a  and All 
Other Groups! 

 
 
We define G of one to any other type as  
 

)group)other any in event nearest   event to  group rnd(Pr()( raDistrGa 

 
If each group is a CSR process, then as before we have  

0       ,1)(
2

 

 rerG
r

a


 

where 




g

a
a

1

  

Basically, this is the percent of observed nearest neighbor 
other group distances (i.e. from a  to any other group) that 

are less than r  
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)event) groupany  olocation t rnd(Pr()( rDistrF 
 

(basically a useless function since it means we're just 
putting all points in one group – so just use regular F 
function) 
 

)(1

)(1
)(

rF

rG
rJ a

a



 


   

 
 

 

 
event) 1 group random a of  withingroupother any in  events(#

)(


 


 hE
hKa
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   

)(
 )(

hK
hL a

a


 
   

 
 
 
 Multi Group Comparison Functions in R.  In the script 

MarkedSPP.R.txt are a few examples of multi group 

functions.   http://reuningscherer.net/fes781/rscripts/markedspp.r.txt 

The R multi group functions are Gdot, Kdot, Ldot, and Jdot 

http://reuningscherer.net/fes781/rscripts/markedspp.r.txt
http://cran.r-project.org/index.html
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Point Process Models 
 
Cressie (1993) – I have to say, this is dense, but in 
some ways still the best overview of what is available.  
Section 8.5. 
 
Diggle  (2014) – See Chapter 6.  A good overview 
 
Baddeley  (2015) – See Chapters 9 and 10.  Awesome. 
 
Spatstat package – there is actually a wealth of information in the 900+ page 
spatstat users manual : http://www.spatstat.org/spatstat/ 
 
 

CSR is a rather limited 'null hypothesis', and many of the 
procedures/functions we've seen are mostly a rejection of 
CSR.   What about some other models, or other 
hypotheses? 
 

  

http://www.spatstat.org/spatstat/
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Heterogenous Poisson PP 
 

 Perhaps the simplest alternative to the CSR, 

constant intensity   Poisson PP. 
 

 We already defined a heterogenous Poisson point 

process with intensity function )(s  (think mean), 

where s is any point in our study region R , using the 
following criteria :  

 

1) The number of events in any region RA  has a 

Poisson distribution with mean A dss)(  

2) Given that a total of NX   events occur in A, the 

locations of the events are a random sample of  N
events sampled proportional to )(s  
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Let's revisit three heterogenous point processes we've 
already seen : 
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In these instances, we KNOW the underlying intensity 

functions  )(s  : however, how do we generate a point 

process with this intensity function?  Here's the method 
proposed by Lewis and Shedler (1979) : 
 

1)  Determine max , the maximum intensity over the entire 

study region R . 
 

2) Generate a homogenous point process with intensity 

max  over R  

 
3) For a generated point at spatial location s , keep the 

point with probability

max

)(



 s
 .  Determine this 

independently for each point.  
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 Inhomogenous  Poisson PP in SPATSTAT.  Examples of two of 
the three heterogenous poisson pp above are available here : 
 

http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt 
 
The first example (two multivariate normal distributions) uses the method 

described above.  However, if the underlying intensity function )(s  is 

known, you can use the rpoispp( ) function.  This function also 

allows you to input a grid image where image height equals density 
function height (i.e. results from kernel smoothing, etc).  
 
 

 
 
  

http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt
http://cran.r-project.org/index.html
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NOW :  

 Usually, all we get to see is the data locations, and we 

want to estimate )(s . 

 

 We've already discussed how to use quadrat counts of 
kernel smoothing to get a non-parametric estimate 

)(ˆ s  

 

 However, if we specify some family of models, we could 

try to fit a parametric model for )(s !! 
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Parametric Models for )(s  

 

 Use maximum likelihood to fit a model )(s  

with parameter vector  . 
 

 Need to make sure  )(s  is non-negative, so need 

some constraints (see Cressie p. 655) 
 

 Some typical models (from Baddeley) :  
 

Homogenous Intensity :  )(s   (CSR) 

 

Homogenous by Region : 
jRs  )(   where 

mRRR ,...,, 21 are distinct (and non-overlapping) 

regions (like counties or states) 
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Intensity by Baseline : )()( sbs     where )(sb  is a 

'baseline' function defined at every point in space  (such as 
underlying population density).  This might be appropriate to 

model density of disease cases (  is the probability a 
particular person gets a disease). 
 
Exponential Function of Covariate : 

 )(exp)( 1 sZs o     where )(sZ  is a spatial 

covariate (such as slope or distance to pollution source, etc). 
 
Raised Incidence Model (just combine previous two 

models) :  )(exp)()( 1 sZsbs o      

 
General Loglinear Model :  

 )(...)()()(exp)( 2211 sZsZsZsbs pp     
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Residuals  
 
There has been work on creating 'residual' plots for these 
models to evaluate model fit.  Four types of residuals are 
discussed.  The paper to read is : 
 
Baddeley, A.,Turner,R., Moller, J. and Hazelton,M. (2005) Residual 
analysis for spatial point processes.  Journal of the Royal Statistical 
Society, Series B67, 617–666. 
 
Raw Residuals 

 Choose a set of unobserved locations in the study 

region R .   This can be random, or can be a grid (this is 
the default in spatstat).   The number of points is the 

area of R  times the estimated overall intensity ̂  times 

a constant K  (usually K =4). 
 

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2005.00519.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2005.00519.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2005.00519.x/abstract
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 Create the quadrature : the combination of the original 
locations and the new unobserved locations. 
 

 Calculate the 'raw residual' at every point s  in the 
quadrature : 
 

)(ˆ)()()( sswszsr   

 

)(sz  = 1 if an observed point, 0 if an unobserved point 

)(ˆ s  = the model predicted intensity at point s  

)(sw  = weight  (based on the number of quadrature 

points per grid area, or based on area of direchlet 
tessellations) 
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Example : suppose 1)(ˆ s , we have 100 observed 

points, and 400 unobserved points over a 10x10 region (so 
500 quadrature points).   

5

1
)( sw , so  

5

4
1*

5

1
1)( sr  for 100 observed points and  

5

1
1*

5

1
0)(


sr  for 400 unobserved points 

 
On average, the residuals will sum to ZERO!!!! 

 

 
 

For other types of residuals, see paper above . . . . 
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 Parametric Inhomogenous  Poisson Models in SPATSTAT.   
 
Most general is the ppm() function (poisson process model). 

This fits polynomials of various orders based on spatial location.  Can also 
include covariates.  Includes various border correction methods (as we've 
discussed).  Can use maximization methods besides MLE.  For residuals, 
use plot.msr ( ) and diagnose.ppp ( ) 

 
Examples of two of the three heterogenous poisson pp above are 
available here, with models and residuals, comparison to kernel 
smoothing : 
 
http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt 

  

http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt
http://cran.r-project.org/index.html
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Example in Depth : To see how this process of model fitting 
works, and to examine the tools available in spatstat, we 

first look at a created example : 

20

)(
)()(

yx
sbs


  
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Model 1 : Fit a CSR model to this data (i.e. we fit a flat 

surface that we know is incorrect) 
 
Poisson process 

Intensity: 0.9325 

               Estimate       S.E.    CI95.lo    CI95.hi Ztest      Zval 

log(lambda) -0.06988613 0.05177804 -0.1713692 0.03159696       -1.349725 

 

This estimates that 07.0))(ˆlog( s  (i.e. a constant) 

so 93.0)(ˆ s .   Note that this is a log-linear model (i.e. 

it's fit on the log-scale) 
 

Residuals :  
Scalar-valued measure 

Approximated by 1976 quadrature points 

window: rectangle = [0, 20] x [0, 20] units 

372 atoms 

Total mass: 

discrete = 372   continuous = -372   total = -8.8402e-15  
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Evaluating Model Fit  
 
1) Chi-Square Test using Quadrat Counts – as we 

discussed previously, we can subdivide the region R  
into quadrats (or quantiles) of equal size.   We can then 
compare observed count vs. the model predicted count 
in each region and perform a Chi-square Test! 

 
Aside – I figured out that the values reported in the plot below are the 
Pearson Residuals :  

N Expected

N Expected-N Observed
ResidualPearson   

Chi-squared test of fitted Poisson model ‘model1’ using 

quadrat counts        Pearson X2 statistic 

data:  data from model1 

X2 = 82.839, df = 24, p-value = 4.268e-08 

alternative hypothesis: two.sided 

 

Quadrats: 5 by 5 grid of tiles  
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Model doesn't fit 
very well . . .  

  Chi-Square Test Assuming CSR

24 24 19 25 26

10 13 12 22 21

9 5 18 18 22

4 14 10 12 20

2 6 7 12 17

14.9 14.9 14.9 14.9 14.9

14.9 14.9 14.9 14.9 14.9

14.9 14.9 14.9 14.9 14.9

14.9 14.9 14.9 14.9 14.9

14.9 14.9 14.9 14.9 14.9

2.4 2.4 1.1 2.6 2.9

-1.3 -0.49 -0.75 1.8 1.6

-1.5 -2.6 0.81 0.81 1.8

-2.8 -0.23 -1.3 -0.75 1.3

-3.3 -2.3 -2 -0.75 0.55
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2) Kolmogorov-Smirnov Test – this is a widely used test 
to compare the emperical CDF to the modeled CDF.   
Essentially, the test is based on the maximum distance 
between the two curves.   
This can be evaluated in 
the x direction or the y 
direction, OR based on a 
covariate (more on this 
later . . . .) 

 
Spatial Kolmogorov-Smirnov test 

of CSR in two dimensions 

 

data:  covariate ‘x’ evaluated at 

points of ‘linearpp’  

     and transformed to uniform 

distribution under CSR 

D = 0.13912, p-value = 1.115e-06 

alternative hypothesis: two-sided  
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Model 2 : Fit a model increasing linearly in X and Y 
(which is the true model in this case)  
 
Nonstationary Poisson process 

 

Log intensity:  ~x + y 

 

Fitted trend coefficients: 

(Intercept)           x           y  

-1.23745315  0.04945971  0.05753418  

 

               Estimate        S.E.     CI95.lo     CI95.hi Ztest      Zval 

(Intercept) -1.23745315 0.162068478 -1.55510153 -0.91980477   *** -7.635372 

x            0.04945971 0.009202413  0.03142332  0.06749611   ***  5.374646 

y            0.05753418 0.009277379  0.03935085  0.07571751   ***  6.201556  

 

Notice that X and Y are both significant predictors  

 

 
Residual on next page – notice that magnitude of errors is 
much smaller, cumulative residuals in X and Y are both 
within expected bounds  
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Chi-squared test of fitted Poisson model ‘model2’ using 

quadrat counts 

        Pearson X2 statistic 

 

data:  data from model2 

X2 = 27.887, df = 22, p-value = 0.3589 

alternative hypothesis: two.sided 

 

Quadrats: 5 by 5 grid of tiles 

 

Chi-Square Test is non-significant.   Note in plot below that 
predicted values are NOT all the same for each cell! 

  
Spatial Kolmogorov-Smirnov test of inhomogeneous Poisson 

process in two dimensions 

data:  covariate ‘y’ evaluated at points of ‘linearpp’  

     and transformed to uniform distribution under 

‘model2’ 

D = 0.036096, p-value = 0.7176 

alternative hypothesis: two-sided  
 
Chi-K-S Test is also non-significant – models seems to FIT! 
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  Chi-Square Test for Linearly Increasing Model
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Comparing Models 
 
Since we're using maximum likelihood, we can calculate the 
Akaike Information Criteria (AIC) ( p  is the number of 

estimated parameters in the model) : 

 

)ln(22 LpAIC   

 
Bottom Line : SMALLER IS BETTER 

 
Example : We have a flat CSR model and a linearly 
increasing in X and Y model.  Second model is better! 

 

 
AIC Model 1 :  799.9926 
AIC Model 2 :  734.6801  
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Comparing Nested Models 
 
If we compare two NESTED models (i.e. all the 
terms in model 1 are also in the more 
complicated model 2), we can actually do a 
DEVIANCE Likelihood Ratio Test –  
 

 )ln()ln(2 12  LLD   

 

If the models fit equally well, then D  should have a Chi-
Square distribution with degrees of freedom equal to the 
diffence in parameters between model 1 and 2.    
 

If the D  is to large, then model 2 is better than 
model 1! 
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Example : Deviance is 69.3 on 2 degrees of freedom.   
Reject hypothesis that models are equally good - second 
model is better! 

 
Analysis of Deviance Table 

 

Model 1: ~1             Poisson 

Model 2: ~x + y          Poisson 

  Npar Df Deviance  Pr(>Chi)     

1    1                           

2    3  2   69.313 8.892e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

 

 
In online code, example of overfitting same model  
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Poisson Model with Covariate 
 
Example : BEI data (in spatstat package).   See Results in 
Program 
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K and L functions for 
Inhomogenous Poisson Point 
Processes 

 
A. Baddeley, J. Møller and R. Waagepetersen (2000). Non- and semi-parametric 
estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 
54:329-350.  

 

 Article above proposes )(hK I  based on an 

inhomogenous process. 
 

 Assumed is an inhomogenous Poisson point process 

with mean function )(s  defined on a region R . 

 

 Process is assumed to be 'reweighted second-order 
stationary' – this means simply that after you subtract 
the underlying mean function, points are neither 
clustering nor repelling (regular).   

http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00144/pdf
http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00144/pdf
http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00144/pdf


FES781b Spatial Point Processes : JDRS 163 

 

 )(hK I  is still 

 

 
 

event) random a of  withinevents(#
)(

s

 hE
hK I


  

 

 Non-homogenous Poisson PP still has  )( 2hhK I 
as before 
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 New Estimator for )(hK I :  

 

   
 

ˆˆ

)),((
)(ˆ

1 1










N

i

N

ij
j ji

I
sλsλ

hjidI
hK  

 

Essentially, this means add up 
   ji sλsλ ˆˆ

1
 for all points less 

than h  apart. 
 
 

This means we need an estimated intensity function 

 sλ̂  : use either kernel smoothing or parametric model 

discussed above  
 

(spatstat uses kernel smoothing by default) 
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As before, we can modify )(hK I  to get a nicer reference 

function )(hLI  : 

h
hK

hL I
I 



 )(ˆ
)(ˆ  

 

and 0)( hLI  (flat line) for an inhomogenous Poisson PP. 
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 Inhomogenous K function in R.  First, you can use functions I 
wrote previously for making nice K and L plots : just include the 
following line in your R code 

 

source("http://reuningscherer.net/fes781/rscripts/kandlfunctions.r.

txt") 

 
I've put up examples for two non-homogenous point processes discussed 
above and for several species in Tim's tree data :  
 
http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt 
 
 
The R function in the spatstat package you need is kinhom( ) 

 
Results in R – Maine tree data, made up processes.  What 
was a clustered process, now starts to look like a regular or 
inhibited process! 

http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt
http://cran.r-project.org/index.html


FES781b Spatial Point Processes : JDRS 167 

 

Other Models for Point 
Processes 

 
 
1) Poisson Cluster Processes 
 
Originally started as model for location of insect larvae; also 
used in bacteriology.  Relevant when modelling tree seedling 
data as well.  Sometimes called a Neyman-Scott process 
(1958 paper) 
 
Three part process : 
 

1)  Choose location of cluster centers according to a 

Poisson process with intensity )(s  (centers could 

be egg mass locations, pine cone locations, tree fall 
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locations, etc.).  Note : this could be either a 
homogenous or inhomogenous process.   
 

2) At each cluster center, choose a random number of 

offspring S according to some distribution Sp  ( Sp  

could be Poisson, uniform, anything) 
 

3) Distribute the S  offspring points according to some 

bivariate distribution (.)f  (often a multivariate normal 

or Cauchy) 
 
The original points are often included in the final count so 
that there is at least one point at each cluster location (in 
case there are no children) 
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2) Cox Process 
 

 Another way to model a clustered process 
 

 Idea – clusters form because of random environmental 
heterogeneity. 

 

 Assume the intensity function )(s  is a random 

stochastic process (i.e. not some nice polynomial, but a 
process with random high and low points across space) 

 

 Under certain assumptions, a Cox process is equivalent 
to a Poisson Cluster Process (see Cressie, p. 663) 
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Cluster Processes R.  The main function is kppm – this fits 
Poisson cluster models, Cox models, and several others.  I tried 
this out in  

 
http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt 
 

 
The models below are discussed in Cressie in some detail.  
Still figuring out which ones can be done in SPATSTAT. 
 
3) Simple Inhibition Point Process 

 
4) Gaussian Cox Processes 

 
5) Markov Point Processes 

 
6) Thinned Processes 

http://reuningscherer.net/fes781/rscripts/heterogenous_poisson_pp.txt
http://cran.r-project.org/index.html
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Spatial Association, 
Clustering, and 
Autocorrelation 

 
 

TIM GREGOIRE gets credit for much of what is in these notes! 
 
Other places to read :  
 

 Bailey &Gatrell, Chapter 7 

 Haining (2003), Chapter 8 

 Waller and Gotway, Chapter 7 (esp. 7.4) 

 ESRI Guide to GIS vol 2. (2005) – Chapter 3 

 Griffith 2009 article ‘Spatial Autocorrelation’ – nice 
overview of issues 

 Great set of notes from Ron Briggs at U Texas Dallas  
http://www.utdallas.edu/~briggs/henan/ 

https://booksite.elsevier.com/brochures/hugy/SampleContent/Spatial-Autocorrelation.pdf
http://www.utdallas.edu/~briggs/henan/
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FIRST – a reminder of three types of spatial 
data we consider 
 
 Spatial Point Patterns (what we just 

finished) – fixed location of events (trees, 
volcanoes, diseases) 
 

 Spatially Continuous Data (soil moisture, pollution 
concentration, income, etc) : Data distributed on a 
fixed, continuous domain, often 
termed geostatistical data. Attribute 
can be measured at an infinite 
number of locations – this is the topic 
after this one! 
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 Lattice Data (area data, 
regional data) : Arises from 
measurements on a fixed, 
discre te domain, such as 
counties, countries, census 
tract regions, pixels. The 
domain comprises a 
countable set of locations (subregions) on each of which 
a measurement may be made of an attribute which 
pertains to the entire subregion, and not to any particular 
point within it – diseases cases per county, average 
income per census block, etc. 

 
This data is our current focus! 
 

“Measures of spatial autocorrelation originated from the 
consideration of data on lattices.” (Schabenberger & Gotway, 2005, p. 

19) “ 
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Our Goal : examine associations among the measured 
values in adjacent elements of the lattice (including 
how to quantify such a measure) 
 
Lattice Shapes 
 

 Regular : all areas same size and shape.  
Includes pixel images.  
 

 Irregular : counties, census tracts, 
property boundaries. 

 
 
Distance : a bit ambiguous with lattice data, especially if 
irregular. However, some measures of spatial association 
don’t require distance. 
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So what is ‘Spatial AutoCorrelation’?  
Griffeth (2009) (page 2-2) describes 
some common definitions : 
 

 Self-correlation attributable to the geographical ordering 
of data 

 A conspicuous map pattern/trend  (extreme is all values 
the same – perfect spatial autocorrelation) 

 A diagnostic tool for spatial model misspecification (or 
missing variables) 

 A spatial process mechanism (i.e. a weather front moving 
across a landscape, the spread of a disease from a 
central starting location) 

 A nuisance parameter when applying traditional stat 
techniques to spatial data 

 An ‘outcome of areal unit demarcation’ (Modifiable Area 
Unit Problem – more on this later).  However, here’s an 
example : 

https://booksite.elsevier.com/brochures/hugy/SampleContent/Spatial-Autocorrelation.pdf
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FIRST – define a ‘unit’ as a 1x1 square.  
Here, we have perfect negative spatial 
auto-correlation (think of the blues as +1, 
and the yellows as -1).    A yellow is always 
next to a blue on all sides – neighbors are 
perfectly ‘negatively correlated’ 
 
 
NOW : Change our definition of a ‘unit’ – 
make this a 2x2 square.    The ‘average’ 
color is now green for all adjacent units 
(2x2 squares) – this is perfect positive 
spatial auto correlation! 
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Math Definitions 
 

R   The entire domain under consideration (eg an entire 
state) 

iA  A sub-region of R   (like a county) 

 

N  The total number of sub-regions in R  
 

ji,  Indices keeping track of the sub-regions  ( Nji  ,1 ) 

 
Note that we assume that  
 

i

N

i

AR
1

    (the union of all sub-regions makes R ) 

0


j
ji

i AA   (no two subregions overlap) 
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ijw  Spatial Connectivity Weights – a measure of spatial 

proximity  (for example, might be Euclidean distance 

from centers, or might be 1 if iA  and jA are ‘connected’ 

or ‘adjacent’, 0 otherwise) 
 

ijsim  Some measure of Similarity between iA  and jA  

 

iY  Any continuous variable measured in each sub -region 

iA  (average age, total disease cases, average income, 

etc).  THIS IS THE DATA! 
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Measuring Spatial Association / Clustering / 
Autocorrelation 

 Not easy to define what this means 

 Main goal – come up with a  spatial analogue to the 
usual ‘bivariate’ non-spatial correlation r . 

 Waller and Gotway, 7.4 : 

A global index of spatial autocorrelation provides a 
summary over the entire study area of the level of spatial 
similarity observed among neighboring observations. 

 

 This (naturally) leads to the idea of a local index of spatial 

autocorrelation which can vary over R  
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Global Index of Spatial Autocorrelation – General Form = 
Global Cross Product Statistic! 
 



 




w

simw
N

i

N

j
ijij

1 1
    

 

Where w = 
 

N

i

N

j
ijw

1 1

,  i.e. the total sum of ALL pairs of 

weights. 
 

(Usually assume 0iiw )  
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Local Index of Spatial Autocorrelation – General Form = 
Local Cross Product Statistic! (i.e. calculated separately for 

each subregion iA  )  








w

simw
N

j
ijij

i

1
 

 
 

Different choices for ijw  and ijsim distinguish the 

various spatial autocorrelation measures   
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Commonly used measures of spatial weighting functions 
(see p. 261, B&G; pp. 224-225, W&G)  (not an exhaustive list) 
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Comments 
 

 All but the last two are binary measures of proximity. 
 

 Some authors discuss an NN  proximity matrix of 

weights :  ij
NN

w


W .   

 

 If all ijw  are 0 or 1, W  is called a Binary Connectivity 

Matrix, or an Adjacency Matrix 
 

 W is symmetric in cases i), iii), and iv) 
 

 Distance-based measures of proximity  iii) and iv)  presume 
some point measure of location (e.g., a centroid) when 
dealing with area-based (lattice) data. 
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Assessing adjacency – Who’s Touching! 

There are various ways to define a shared boundary, 
illustrated most simply for regular lattices, as in the following 
figure (Schabenberger & Gotway (2005).)     Note : in this regular lattice case, 
each square represents a subregion iA  
 
 
 
 
 
 
 

These simple contiguity schemes are named after chess 
moves: 

a) adjacency is determined by the rook definition; 
b) the bishop definition is used;  
c) the queen definition is used. 
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In all three cases : 
 
 
 
 
 

Example : 3x3 Grid (that is assume R  is the 3x3 grid in the 
center; ignore the other pixels) 
 

w  = 24 with rook adjacenty 

w  = 16 with bishop adjacenty 

w  = 40 with queen adjacency  
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For irregular lattices, such as the counties of the state of 
North Carolina Schabenberger & Gotway (2005), chess rules can still 
apply. 

 

 Rook = neighbors have to have a common boundary of 
non-zero length 

 Bishop = neighbors have a common point, but that’s it 

 Queen = Rook and/or Bishop 
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Towards the left is an illustrative example of weighting case 
i) definition for the proximity weight, namely 

 
 
 
 
 

Towards the right is an example of weighting case iv) based 

on distance separating centroids of iA  and jA : any county 

within the radius of the circular area is a neighbor. 
 
In any application, only one proximity rule would be applied! 
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Global Indices of Spatial Autocorrelation 
 

A Global Index : 

 Is a number which attempts to capture the 
strength of similarity of observations among the 

sub-regions, iA , over all of R   
 

 Provides a summary measure of the degree to which 
similar observations tend to occur near each other 
(W&G, p. 223). 

 

 Aims to mimic the familiar linear correlation coefficient 
which measures the strength of similarity between two 
variables. 

 

 Only deals with a single variable, rather than a pair 
(hence, the “auto”) and its similarity over space. 
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Moran’s I 
A measure of spatial clustering when Y is 
continuous (think avg income, soil moisture, etc). 

 

Definition :   



 




w

simw

I

N

i

N

j
ijij

1 1
 

 
 

Where  
  

)(YVar

YYYY
sim

ji

ij


   and  

N

Y

Y

N

i
i

 1
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Or, substituting 

  

)(

1 1

YVarw

YYYYw

I

N

i

N

j
jiij



 

 

  

 
 

This looks a lot like a ‘spatial’ version of the Pearson 

correlation coefficient between two variables, X and Y  
 

     

)()()()(

1

1 11

YSDXNSD

YYXX

YSDXSD

YYXX
N

r

N

i

N

i
ji

N

i
ji 

 







  

 

where the weights are 
N

wij

1
   
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W&G (p.228) characterize I  as ‘a spatially weighted’ form of 

r.  Alas, I  can exceed 1, so it’s not a perfect analogue to r  

 

Note : Moran’s I will take different values depending on how 

you define your weights ijw .   This will depend on two things: 

 How adjacency is determined (who are neighbors – 
queen, rook, bishop, etc.) 

 What weighting definition is used (binary, distance, 
etc). 

 

Properties of Moran's I  

I  > 0 (ish)  Neighboring regions tend to have similar 
values, and hence be clustered. 

I  < 0 (ish)  Neighboring regions tend to have 
different values. 
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Mean and Variance of I  

 

Mean :   
1

1




N
IE    (unfortunately, not zero) 

Variance : this is harder than it looks 

 

Case 1 : if we assume the iY  are identically,  

independently, normally distributed (?!?!), then  

 
  

2

2

2

21

2

1

1

11

3





















NNN

NSSN
IVar




 

where  

 
 


N

i

N

j
ijijS

1 1

2

1
2

1
   and   


 

N

i
iiS

1

2

2
2

1
  
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This result was derived by Cliff and Ord (1973, 1981). 

 

Case 2 : Assume that the iY are completely 

exchangeable (random permutation approach – which is 

how we get randomized tests.).  IVar  is similar – and 

messy! 
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More on Weights 
 

  ij
NN

w


W  the weight matrix 

 The ith row of  W  is the total weights contributed by 

subregion iA . 

 Some iA  will naturally have more neighbors, and hence 

potentially total overall ‘weight’ 

 May want to row standardize W  so that each subregion iA  

has the same influence in the calculation of global indices 
(like Moran’s I) 

 However, can also leave W  alone and not worry about 
some subregions having more influence than others. 
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Moran Scatter Plots  (term coined by Luke Anselin : Spatial 

Analytical Perspectives on GIS, 1995) 
 

If we row-standardize our weight matrix W  (make them all 

sum to one), we can write Moran’s I  in matrix form 
 

  cccc

cc

ccI WYYYY
YY

WYY







1
 

 

Where cY  is the 1N  vector of centered but not scaled iY

values, i.e.  YYi  . 

 
Anselin noted (regression lovers!) that this is slope of the line 

when we predict  cWY  based on cY , i.e. I  is a slope! 
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What is cWY ?   

 
These called the spatial lags – it’s the weighted averages 

of the Y values for the neighbors of each subregion iA .   

We’ll call this )( iYlag   (so cWY  is the vector of all the lags) 

 

SO : we can graphically plot cWY  (the lags) vs. cY  in a 

MORAN SCATTER PLOT. 
 
Aside – dotted lines (horizontal and vertical) represent the 

mean values of cWY  and cY .  The upper right and lower left 

quadrants defined by these lines are points with positive 
association between a location and it’s spatial lag 
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Moran’s I can be interpreted as the correlation between 

variable, Y ,  and  the  spatial lag of Y  formed by averaging 

all the values of Y  for the neighboring subregions (polygons).  
We can then  draw a scatterplot between these two variables 

(in standardized form):  Y    and  )( iYlag  (i.e. cWY )  

  

iY

)( iYlag  is the 

average of Y
in surrounding 
subregions 

Least squares “best fit” line to the 
points. The slope of this 
regression line is Moran’s I! 
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Example: Population Density in Puerto Rico  

Moran’s I = 0.49, 
the slope of the 
regression line 

High 
surrounded 

by high 
Low 

surrounded 
by low 



FES 781b Spatial Stats - JDRS 29 

Geary’s c (Geary’s contiguity ratio, index, etc). 

 

Here’s what Geary wrote in 1954 about the motivation 
for his statistic : 

 

The problem discussed in this paper is to determine 
whether statistics given for each county in a country are 
distributed at random or whether they form a pattern.” 

 

Geary’s index is 



 




w

simw

c

N

i

N

j
ijij

1 1
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Where  
 

)(2

2

YVar

YY
sim

ji

ij


    

 

Or, substituting 

 

)(2

1 1

2

YVarw

YYw

c

N

i

N

j
jiij



 

 

  

 

Handy facts : 

 

 c  ranges from 0 to 2 

 0 indicates perfect positive spatial correlation, 

 2 indicates perfect negative spatial correlation 

 1 indicates no spatial autocorrelation (i.e. 

  1cE ) 
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Note : 

– For Moran, the cross-product is based on the 
deviations from the mean for the two location values 

– For Geary, the cross-product uses the actual values 
themselves at each location  

 

)(cVar  depends on the distribution of the iY , and has been 

solved for iY  normal and under the assumption of 

exchangeability.   

Formulae are messy and not really informative.   Computer 
takes care of this!  (or see Lee and Wong, 1st edition, p. 81 
and p. 162) 
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I  vs c   (I c U!) 

 

 I  is regarded as a ‘global’ measure across the entire 
region 

 

 c  is considered to be better at quantifying local 
behavior, but is still a ‘global’ measure. 

 

Both assume constant mean and variance (i.e. stationary 
spatial process).    

 

If this is NOT true, it’s hard to rely on the interpretation of I  
or c . 
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Hot Spots and Cold Spots 
 

 Hot Spot : A place where high values 
cluster together 

 

 Cold Spot : A place where 
low  values cluster together 
 

 
 
Moran’s I and Geary’s c cannot distinguish between them 
  

• They only indicate clustering 
• Cannot tell if these are hot spots, cold spots, or both 

  

e.g. high 

crime area 

e.g. low crime 

area 
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Getis & Ord G statistic 

 First, have to identify a distance band, d , within which 
clustering occurs. 









 


N

i

N

ij
j

ji

N

i

N

j
jiij

YY

YYw

dG

1 1

1 1
)(   where 



 


otherwise 0

 if ,1 dd
w

ij

ij  

Note that for subregions iA  and jA  that are more than  

apart, d , then 0ijw , i.e. no contribution to the statistic. 
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Here, we talk about concentration, rather than correlation : 

 

 If nearby iY  values are large (‘hot spot’), the numerator 

will be large.  

 If nearby iY  values are small (‘cold spot’), the numerator 

will be small.  

 

 

The authors showed that  
)1(

)(


 

NN

w
dGE  and the 

variance is just messy (see original paper if you care).   
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The authors write of their statistic (and the paper is a nice 
read) 

 

)(dG  measures overall concentration or lack of 

concentration of all pairs of [locations] such that i  and j  

are within distance d or each other.   

 

They emphasize that )(dG  and I  measure different 

aspects (concentration versus correlation) of spatial pattern, 
and therefore ought to be used simultaneously. 
  

http://archive.nefmc.org/tech/cte_mtg_docs/130516/CATT%20Report/Getis-Ord%20statistic.pdf
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Statistical Significance Tests for I and c and G 
 

Hypothesis Test: 
 

:0H  No spatial autocorrelation 

:aH  There is spatial autocorrelation 

 
 
Based on the normal frequency distribution with 
 

 
)1,0(~

)(
N

IVar

IEI
Z


            

 
)1,0(~

)(
N

cVar

cEc
Z


  

 

    
 

)1,0(~
)(

N
dGVar

dGEdG
Z


  
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As mentioned above, there are different formula for 

calculating  IVar  or  cVar  or  )(dGVar : 

– The free sampling or normality method 

– The non-free sampling or randomization method 

– These formulae are messy and not really informative 
 
In either case, the statistical test is carried out in the same 
way. 
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Monte Carlo Test – (for I  and c ) 
 

1. Randomly reassign iY  across the 

various subregions iA . 

2. Calculate I  (or c ) 

3. Repeat many (1000) times 

4. Calculate the percent of times I  (or c ) for the original 

data is more extreme than the randomized I  (or c ).   
This is the p-value. 

 

These tests can be done in the spdep package using 

moran.mc and geary.mc. 
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A few thoughts (from TGG): 

 

 The calculations of Variance assume that the Y’s are 
normally distributed.  Should you worry if they’re not? 

No – the CLT guarantees that our global stats will still be 
approximately normally distributed.  A bigger worry is non-
stationarity (i.e., what if mean is NOT constant across the 
entire region). 

 

 Would Moran’s I and Geary’s c ever give opposite results?   

Probably not in most ‘actual data’ situations 

 

 Would I ever indicate significance and c not indicate 
significance?    

Probably in borderline situations, but life isn’t all about p-
values 
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What if overall mean is NOT constant (not stationary)? 
 

If the overall mean is not constant, what about fitting a 
regression model to remove mean, and then calculate 
Moran’s I on the residuals? 

 

Great idea!  This is function lm.morantest (see online 
example code) 

 
Of course, if our model is misspecified, this could results in 
spatial autocorrelation among the residuals.  (McMillen, “Spatial 

autocorrelation or model misspecification?” International Regional Science Review 26(20) 208-
217; available online, Yale SML). 
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Spatial Autocorrelation in R.  The spdep package is the main 

package for spatial autocorrelation for subregions.   Lots of cool 
functions; however, I find help files rather esoteric and hard to 

understand.  Here are some important functions : 

moran.test()  Calculated Moran’s I and parametric test for 

significant departures from spatial independence. 

moran.mc() Calculated Moran’s I and non-parametric (Monte 

Carlo) test for significant departures from spatial 
independence. 

poly2nb()   Calculate which subregions are neighbors. 

coordinates()  Gets location of subregion centroids.  

knearneigh() Calculate k nearest neighbors for each subregion.   

knn2nb()  Calculate k nearest neighbors for each subregion. 

http://cran.r-project.org/index.html
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dnearneigh()  Calculates number of neighbors within fixed radius 

of the subregion centroid. 

nb2listw()  Calculates actual weights based on input list of 

neighbors calculated using some scheme 
mentioned above. 

geary.test Calculate Geary’s c and perform parametric test of 

significance. 

geary.mc Calculate Geary’s c and perform non-parametric 

(Monte Carlo) test of significance. 

globalG.test Calculate Getis-Ord G and perform parametric test 

of significance. 

lm.morantest Calculates Moran’s I for residuals of a linear 

regression model (i.e. look for spatial 
autocorrelation after taking out non-spatial effects) 
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I’ve put up examples of how the weights are calculated, and there is 
detailed analysis of county by county leukemia data from New York State 
(W&G, page 98, and code from various other authors).   Also examples of 
Crime Rates from neighborhoods in Columbus, OH (regression on 
residuals). 
 

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt 
  

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt
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Correlegram – (for I  and c  and G  and, well, correlation) 

 

Think back to weight/neighbor definition iii) 

In this case, we can do the following : 

 Compute a particular global spatial auto-correlation 

statistics for various distances  .   

 Plot the results on a graph (stat on vertical axis,   on 
horizontal axis 

 Create confidence intervals for the statistic for each 
distance 
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 Look for a distance beyond which spatial auto-correlation 
seems to have tapered off :  This is often called the patch 
size 

 

The relevant function in the spdep package is 

sp.correlogram.   It is mind-bendingly frustrating to get 

this function to work (not the best help file ever created).   

 

However, I have an example for the NY census tract data. 

 

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt 
  

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt
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Bivariate Moran’s I  

 

We mentioned earlier that our spatial autocorrelation 
statistics are really univariate statistics.   However, there’s no 
reason we couldn’t define a bi-variate spatial version of 
Moran’s I. 

 

Suppose we have two measured variates, Y  and Z  

 

  

)()(

1 1

ZSDYSDw

ZZYYw

I

N

i

N

j
jiij

YZ



 

 

  

 

You can think of this as a measure of how two variables are 
correlated in neighboring subregions. 
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 
1


N

IE YZ
YZ


  if there is no spatial autocorrelation 

where YZ  is the correlation of Y  and Z  over the entire 

region.   The variance of YZI  is messy and described in 

(Czaplewski, R.L et all, 1993, USDA Forest Service 
Researhc Paper RM-309). 

 

The EcoGenetics package in R will apparently compute 

bivariate Moran's I.   I haven’t tried this yet. 
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Local Measures of Spatial Auto-Correlation 

 

Global indices of spatial association may suggest the 
presence of clustering in the population but fail to indicate 
where clusters are located. 

 

“Recognition of the potential limitations of global measures 
has led to the development of local measures of spatial 
autocorrelation” (Boots, 2002, Ecoscie nce) 

 

They are also called LISAs for Local Indicators of 
Spatial Association (Anselin (1995, Geographic 
Analysis, 27(2) 93-115) ). 
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Local Moran’s I  

   

)(

1

YVar

YYwYY

I

N

j
jiji

i






  

 
1

 

N

w
IE i

i , where 


 
N

j
iji ww

1

 

 

Local Geary’s c  

 

)(

2

1

YVar

YYw

c

N

j
jiij

i






      
1

2


 

N

Nw
cE i

i   
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Local Getis-Ord G  

 
 










N

j
j

N

j
jiij

i

Y

YYdw

dG

1

1
    

1
 

N

w
cE i

i   

 

 
For each of these, the variance is messy and available in 
Anselin, 1995.  
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Characteristics of a LISA: 
 Provides a measure of spatial correlation around each 

sub-region (census block/county/etc.) 

 Can be used to identify hot and cold spots 

 The sum of all LISAs provides a statistic that is 
proportional to the corresponding global measure of 
spatial association. 

 Are a good exploratory tool to detect subregions within 
which spatial association is markedly strong, even 
though the global measure may not indicate spatial 
autocorrelation.  

 Drawback - no theoretical basis to know how these 
measures are distributed so harder to do hypothesis 
tests (still can get p-values based on randomization). 
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The use of LISAs as Exploratory Spatial Data Analysis 
(ESDA) tools seem to be on much firmer ground than their 
use in a confirmatory or test setting. 

 

The relevant function in the spdep package is localmoran.   

Again, the help files are frustrating. 

 

I have an example for the NY census tract data. 

 

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt 
 
 
There is also a localG function in spdep 

http://reuningscherer.net/fes781/rscripts/global_indices.r.txt
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Spatial Regression 
 

 
Usual multiple regression model in scalar 
notation :  if you have p  predictors, the linear 

model for the value of iY  for a single observation 

i  is given by 
 

iippioi XXY   ...11   ,       ni ,...,2,1  

 

),0(~ 2 N
i

 

 
 
Note – other more complex models are possible (non-linear): for 
now, we’ll stick to the linear case 
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NOW : if    

























p

o










2

1

β

   is a 1p  column vector and 

 ipiii XXX 211x  is a p1  row vector then 

 
 

iiiY  βx    (very compact) 
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NEXT – stack up all the these equations on top of each other, 
one for each observation in the dataset : 
 
 
 
 
 
 
 
 
 
 

THAT IS :     εXβY   

  





























































































np

o

npnn

p

p

p

n
xxx

xxx

xxx

xxx

Y

Y

Y

Y






























3

2

1

2

1

21

33231

22221

11211

3

2

1

1

1

1

1
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Usually we assume homoscedasticity (constant 
variance!)  
 

 For the i th observation,   2ii|YV x  (same 

for every observation – this is variance of errors) 

 Covariance matrix of all n  observations : 
 

  IX|Y
2V    (where I is the identity 

matrix) 
 
IDEA :  heterorscedasticity, spatial correlation, temporal 

correlation, are all modeled by modifying, the covariance of 

Y  given X , i.e. the covariance of the errors! 
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If we’ve specified the model ‘correctly’ (maybe better to say 
‘adequately’), then  
 

Mean of Y  =    XβX|Yμ  E  

 
In this case, the mean of the errors (the residuals) should be 
zero –  
 

𝐸|𝜀| =

[
 
 
 
 
𝐸|𝜀1|
𝐸|𝜀2|
𝐸|𝜀3|
⋮
𝐸|𝜀𝑛|]

 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 

 
Note: this is one main reasons we look at residual plots – to see if 
we’ve missed any ‘mean’ trends 
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Back to  
 

In the usual homoscedastic, independent error case, I
2  

 
Let’s think about the more general case : 
 

By definition, the variance of 𝜀𝑖 is 𝑉𝑎𝑟(𝜀2) = 𝐸[𝜀2
2] − (𝐸[𝜀2])

2 

 

But, we assume that 𝐸[𝜀𝑖] = 0 
 

SO  :     𝑉𝑎𝑟(𝜀𝑖) = 𝐸[𝜀𝑖
2] 

 

Similarly the covariance between the pair 𝜀𝑖 and 𝜀𝑗 is, by 

definition, 𝐸[𝜀𝑖𝜀𝑗] − 𝐸[𝜀𝑖]𝐸[𝜀𝑗]. 
 

This simplifies to just 𝐸[𝜀𝑖𝜀𝑗] (because 𝐸[𝜀𝑖] = 𝐸[𝜀𝑗] = 0) 
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Therefore 

𝑉(𝜀) = 𝚺 =

(

 
 

𝐸[𝜀1
2] 𝐸[𝜀1𝜀2] ⋯ 𝐸[𝜀1𝜀𝑛]

𝐸[𝜀2𝜀1] 𝐸[𝜀2
2] ⋯ 𝐸[𝜀2𝜀𝑛]

⋮ ⋮
𝐸[𝜀𝑛𝜀1] 𝐸[𝜀𝑛𝜀2] ⋯ 𝐸[𝜀𝑛

2]
)

 
 

 

 

NEXT – typical notation convention is that 𝐸[𝜀𝑖
2] = 𝜎𝑖

2  and 

𝐸[𝜀𝑖𝜀𝑗] = 𝜎𝑖𝑗 

 

𝚺 =

(

 

𝜎1
2 𝜎12 ⋯ 𝜎1𝑛

𝜎21 𝜎2
2 ⋯ 𝜎2𝑛

⋮ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛

2 )
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Heteroskedasticity alone : 𝜎𝑖
2 ≠ 𝜎𝑗

2 for at least some i and 

j; however, 𝜎𝑖𝑗 = 0 

 
Spatial (other) correlation alone : 𝜎𝑖𝑗 ≠ 0 for at least some 

pairs of observations, but  𝜎𝑖
2 = 𝜎𝑗

2 = 𝜎2 (constant variance 

around mean =  Xβ)  

 

Spatial (other) correlation AND heteroskedasticity : 𝜎𝑖𝑗 ≠

0 for at least some pairs of observations, and 𝜎𝑖
2 ≠ 𝜎𝑗

2 for at 

least some i and j 
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SO : our model    εXβεβXY  ,  

 

)(εVar  

 

 specifies the variation of Yaround X  
 

Usually have to put some structure on the elements of  to 
reduce the number of parameters to be estimated (otherwise 

it’s nn *)1(    ) 

 
Can also specify the DISTRIBUTION of the errors ε  

 For binary data, might be a Bernoulli 

 For proportions, use a Beta 

 For counts, use Poisson or negative binomial 

 For continuous data, use NORMAL!  
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  εβXY  , ,  Σ0ε ,~ N  

 
Note: the model above indicates that the ERRORS will have a 
normal distribution, NOT that the data will have a normal distribution.   
This is why we make quantile plots of the errors, NOT of the data 
 
The errors are what is left after subtracting out the mean.   This is the 
CONDITIONAL distribution of the Y’s   

 

 
Generalized Least Squares (not to be confused with 
Generalized Linear Models). 
 

The ordinary least-squares estimate of our coefficients β  is 

given by (https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf ) 
 

https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf
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  YXXXβ 
1~

 

 
The generalized least-squares estimate of our coefficients 

β  is given by (https://en.wikipedia.org/wiki/Generalized_least_squares ) (think 

Mahalanobis Distance) 

  YΣXXΣXβ
111ˆ    

 

In usual regression case, where I
2  (in this case,  is 

said to have a spherical structure), this reduces to the OLS 
case above. 
 

 
At this point, we’ll work through some examples to evaluate models 
of increasing error complexity, and see how this works in R . .  .. 

 
 

https://en.wikipedia.org/wiki/Generalized_least_squares
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Case 1 – homoscedasticity and uncorrelated errors 
 
Example : Comparison of 
number of dead trees 
between aerial photos (X) 
and field counts (Y)  (page 175 

of Barrett and Nutt (1979)) 
 

Rcode : 
http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt  
 
  

5 10 15

5
1

0
1

5

Relationship between Field and Photo counts

Number of dead trees counted on Photo

N
u

m
b

e
r 

o
f 
d

e
a

d
 t
re

e
s
 c

o
u

n
te

d
 i
n

 t
h

e
 F

ie
ld

mean Field count

mean Photo count

http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt
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It seems reasonable for these data to use the model 
 

  11, Xo  βX  

 
In this case, plots were all from different owners, so reasonable 

to assume errors are pairwise uncorrelated : 𝜎𝑖𝑗 = 0 

 
Graph suggests that error variance is constant.  SO : 
 

𝚺 = (

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0

⋮ ⋮
0 0 ⋯ 𝜎2

) = 𝜎2𝐈 

 
 

(spherical error structure).  Residual standard error is 
2̂  
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GLS Results :  
 
Generalized least squares fit by REML 
  Model: Field ~ Photo  
  Data: NULL  
       AIC      BIC    logLik 
  334.3131 341.3832 -164.1565 
 
Coefficients: 
               Value Std.Error   t-value p-value 
(Intercept) 3.385318 0.5295595  6.392705       0 
Photo       0.538317 0.0425284 12.657817       0 
 
Residual standard error: 1.839052  
Degrees of freedom: 80 total; 78 residual 

 
 

LM results (identical) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.38532    0.52956   6.393  1.1e-08 *** 
Photo        0.53832    0.04253  12.658  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.839 on 78 degrees of freedom 
Multiple R-squared:  0.6726, Adjusted R-squared:  0.6684  
F-statistic: 160.2 on 1 and 78 DF,  p-value: < 2.2e-16 
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Case 2 – heteroskedasticity and uncorrelated errors 
 
Example : Tree 
basal area (X) as 
predictive of Foliar 
biomass (Y)  (Cunia & 

Briggs, 1984).  
Heteroskedasticity 
clearly evident – 
variance of Y 
increases as X 
increases 

 
 
 
 
 
Rcode : http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt   

http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt
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Idea : make covariance matrix include X 
 
 

𝚺 =

(

 

𝜎2𝑋𝑖1 0 ⋯ 0

0 𝜎2𝑋𝑖1 ⋯ 0

⋮ ⋮
0 0 ⋯ 𝜎2𝑋𝑖𝑛)

 = 𝜎2𝐝𝐢𝐚𝐠(𝑋𝑖) 

 
 
That is, variance for each Y value is a scaled function of the 
corresponding X value. 
 
Note: output lists residual standard error; however, this is NOT 

correct (i.e. this doesn’t provide an estimate of 


) 
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Here are five models we’ll consider in class (or see R code) 
 
Model 1 – ignore heteroskedasticity (for comparison only) :  

𝚺 = 𝜎2𝐈 
 
Model 2 – fit error variance as a linear function of X :  

𝚺 = 𝜎2𝐝𝐢𝐚𝐠(𝑋𝑖) 
 
Model 3 – same as above, but fit with weighted least squares 
(usual linear model, but with weights = 1/X).   SAME results 
as Model 2 
 
Model 4 – fit error variance as a power function of X :  

𝚺 = 𝜎2𝐝𝐢𝐚𝐠(𝑋𝑖
2𝛿) 

 
For each model, slope relating basal area to foliar biomass is 
almost IDENTICAL.  However, AIC is best for model 4. 
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Generalized Least Squares in R.  The main package you 

want is nlme , and the main function for generalized least 

squares is gls().  There are two relevant functions/options 

for specifying the form of 𝚺 are 
 

varFunc – this specifies the form of the diagonal entries of 𝚺 
includes varFixed, varPower, etc.   See Pinheiro and Bates, 

section 5.2 (on CANVAS under Files Misc Resources varFunc.pdf) 
 

corStruct – this specifies the form of the diagonal entries of 𝚺 

 
 
Tim has some nice examples of the both of these in the 
online R-code varFunc_corStruct_examples.r  (and 
varFunc_corStruct_examples.r.results.pdf)  

http://cran.r-project.org/index.html
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Case 3 – heteroskedasticity and nonlinearity and 
uncorrelated errors 
 
Example : Eucalyptus Leaf Area).  Measurements were 
taken on 744 leaves (area, length and width) and a model 
was fit to predict leaf area (Y) based on the rectangular 
region length*width (X).  In addition, splines were used to 
account for the slight curvilinearity in the trend.  
Heteroskedasticity is also evident 
 
http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt 

  

http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt
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Case 3 – homoscedasticity and longitudinal 
autocorrelation 
 
Example : LiDAR biomass (no data, just example)  (Bollandsas et 

al (including Tim Gregoire), 2013, Detection of biomass change in a Norwegian mountain forest 
area using small footprint airborne laser scanner data. Statistical Methods and Applications, 
22(2) 113-129) 

 
LiDAR was flown on two occasions over a 10 km2 region of 
southeastern Norway to estimate above ground forest 
biomass for the region.  The same locations were measured 
3 years apart.  Goal – predict change in biomass on the 52 
measured plots based on LiDAR metric covariates. 
 
Notation : 52 plots x 2 measurements 
 

itY , 52,...,2,1i  and 2,1t  
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Group observations by plot, then by occasion 
 
Assumptions – this is called compound symmetry 

 Plots are uncorrelated 

 Covariance between the paired measurements on each 
plot was the same for all plots 

 Variance was the same for all plots 
 
 

𝚺 =

(

 
 
 
 
 

𝜎2 σ12

σ21 𝜎2
0 0
0 0

⋯
0 0
0 0

0

0 0
0 0

𝜎2 σ12

σ21 𝜎2 ⋯
0 0
0 0

⋮ ⋮ ⋱ ⋮

0 0
0 0

0 0
0 0

⋯
𝜎2 σ12

σ21 𝜎2 )
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Here is the R-code that was used : 
 
 

gls(Y ~ X1 + X2 , method="REML", 

  correlation = corCompSymm(value = 0.5, 

form = ~1 | subject),  na.action=na.omit) 
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Case 4 – homoscedasticity and longitudinal 
autocorrelation 
 
Example : Heights of boys from Oxford, measured at various 
ages. 
 
Rcode : 
http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt 
 

 
In this model, we specify a continuous autoregressive error 
correlation structure with the corCAR1 correlation function. 
 

Let   be the correlation between observations that are a unit 

(lag 1) distance apart (i.e. one year apart). 
 

http://www.reuningscherer.net/fes781/Rscripts/Regressionexamples.txt
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Then : observations that are a distance d apart, the CAR 

autocorrelation is 
dd  )(   

 

As long as 10  , 
d will decrease smoothly and 

continuously as the distance d  increases. 
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Spatial Regression (cont.) 
 

 
Main Text : Model Based Geo-Statistics (MBG) (Diggle 
and Ribeiro)  Yale online resource    
 
We’ll cover concepts in chapters 1, 2, 3, 5 (much of this 
we’ve already seen in kriging) 
 
Diggle and Ribeiro are developers of geoR package, which is 

what we’ll discuss today (as well as gls in nlme). 

  

http://orbexpress.library.yale.edu/vwebv/holdingsInfo?bibId=8372701
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Resources 
 

1) Tim has created programs to reproduce all of the figures 
in chapters 1, 2, 3, and 5.   These are on CANVAS under 
Files  R Scripts. 
 

2) We’ll look at two different examples today to get a sense 
of how spatial regression works in geoR (and nlme). 
 

Main Code for Today : 
 
 
http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt   

http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt
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Let’s review the MBG spatial regression model  
 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

 

 Nxxx ,..., 21  : our observed spatial locations 

 

  id x:  - the mean which depends on ix  (location) and 

d  (covariates beside location).  Could be constant, sloped, 
quadratic, dependent on covariates like slope/aspect, etc. 
 

 )(.S   - the signal AFTER we remove the mean trend .  The 

realization of a stochastic process (some continuous 
quantity).  This contains the information on spatial 

autocorrelation (if any).  Essentially this is our matrix  

o 
2   - the variation of )(.S  
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o  u  = the correlation of observations in )(.S  that are a 

distance uapart.   If we assume stationarity (and perhaps 
also isotropy), we can express this through the variogram 

 uY  (or covariogram)   )(22 uuC YY    

 

 iZ  - random measurement error.  We assume 

 2,0~ NZi  and the iZ  are uncorrelated with each 

other and with  )(.S . 

  



FES781/STAT674 Spatial Stats – Spatial Regression 29 

 

 
 
 
 
  
  

Partial Sill = 
2   

u

Range / Span = Region where  uY  increases 

Sill = 
2 +

2  

Nugget =
2  

 uY



FES781/STAT674 Spatial Stats – Spatial Regression 30 

 

  

Range / Span = Region where  decreases 

Nugget =  

Partial Sill =  

Sill =  

 uCY
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Next : a bit more about some common covariagram 
/variagram models – the MATERN function. 
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If  = 0.5, we get the exponential variogram 
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MBG favors using the Matern family because of it’s flexibility.   
They recommend fixing  , or trying a few fixed   (.5., 1, 1.5, 
for example).   As we discussed before, this doesn’t really 
have much effect on the fit of the model. 
 
Note – geoR has a cov.spatial() function with cov.model argument 
that allows for  
 

 matern 

 exponential 

 gaussian 

 spherical 

 circular 

 cubic 

 wave 

 power 

 powered.exponential 

 cauchy 

 gencauchy 

 gneiting 

 gneiting.matern 

 pure.nugget 
 
 
 

  



FES781/STAT674 Spatial Stats – Spatial Regression 26 

 

SO : here is how we incorporate spatial autocorrelation 
into our model! 
 
Idea : make covariance matrix include the covariogram 
 
 

𝚺 =

(

 

𝜎2 C(‖𝑥1 − 𝑥2‖ ⋯ C(‖𝑥1 − 𝑥𝑛‖

C(‖𝑥2 − 𝑥1‖ 𝜎2 ⋯ C(‖𝑥2 − 𝑥𝑛‖
⋮ ⋮ ⋱ ⋮

C(‖𝑥𝑛 − 𝑥1‖ C(‖𝑥𝑛 − 𝑥2‖ ⋯ 𝜎2 )
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Example 1 : Elevation Data 
 
http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt  

 
 

 
  

http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt
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Monte Carlo Variograms – a visual ‘test’ of spatial 
autocorrelation (or where spatial auto-correlation ends) 
 

1) Do usual empirical variogram using lags 

2) Next – make empirical variogram using lags, BUT 
randomly assign Y values to each location 

3) Repeat 2) 99 (or other) times to create boundary (use 
convex hull of randomized variograms) 

4) Plot boundaries to see where spatial auto-correlation 
ends 

Function in geoR package is variog.mc.env () 
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Example 2 : Swiss Rainfall Data 
 
http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt  

 
 

 
 
 

http://www.reuningscherer.net/fes781/Rscripts/SpatialRegression.txt
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 Spatial Prediction 
 

Resources :  
 Diggle and Ribeiro, Chapter 3, 5, 6 – our main 

source. 

 Bailey and Gatrell, Interactive Spatial Data 
Analysis, Part C.  Easy to read. 

 Waller and Gotway, Chapter 8.  Online book! 

 Srivastava and Isaaks, multiple chapters.  This is 
a good book for this topic! 

 Read Kate Beard online notes as well (see link 
previously) 

 ArcMap Site : http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-
kriging-works.htm#ESRI_SECTION1_7245621C6C2D4B4A8B01E64C88BDF9B6  

 

So – where are we . . 

 
  

http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm#ESRI_SECTION1_7245621C6C2D4B4A8B01E64C88BDF9B6
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm#ESRI_SECTION1_7245621C6C2D4B4A8B01E64C88BDF9B6
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Continuous Data and Stochastic Processes 
 
 We have measurements of a continuous attribute  Y  at 

spatial locations Nxxx ,..., 21  : that is, we have the 

measurements )(),...(),( 21 NYYY xxx . 

 
Examples : )( iY x  might be soil moisture, soil zinc 

concentration, average basal area, radon levels, rent, income, 
asthma rates, elevation, etc. 
 

 The locations Nxxx ,..., 21  occur over some domain or 

region R  that might be a grid, or might be an arbitrary set of 
points. 
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We now move toward learning how to make spatial 

predictions for a continuous variable  Y  at unmeasured 

locations in the domain R . 
 
 

In other words, given that measurements of a 

continuous spatial process at a few locations, how can 

we use spatial information to make predictions at new 

locations? 
 
 
To help our discussion, here are some motivating examples. 
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Example : (from Waller and Gotway) : 
Smoky Mountain pH Data.  Kaufman et 
al. (1988) measured water pH (these are 

the  Y  values) as well as elevation at a 

number of locations within the Smoky 
Mountains.  A map of pH values is given below : (R code is 
online as Variograms.R.txt) 

 
http://reuningscherer.net/fes781/rscripts/variograms.r.txt 
 

 
 
 
  

http://reuningscherer.net/fes781/rscripts/variograms.r.txt
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Now – let’s look at a subset of the 
dataset - how should we estimate the pH 
at a new, unmeasured location denoted 

by X?  (pause here for discussion). 

 
 
Hmm…. how about another 
 
 
Example : (from B&G and other sources) : 
Radon Data from Lancashire, UK.  Radon 
levels were measured at 339 (about) houses 
in the UK in 1989.  I’ve modified this data and 
added a boundary file.  Code (and link to 
data) is  
http://reuningscherer.net/fes781/rscripts/variograms.r.txt 
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Example : Metal concentrations on Vancouver 
Island  (from B&G).  This data is from the north-
western part of Vancouver Island in BC, Canada.  
There are 900+ observations of the concentrations of 
various metals.  For now, we’ll look at log(nickel) 
values.  File to make plot below is here : 

http://reuningscherer.net/fes781/rscripts/Vancouver_outline.R.txt  
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Um, what’s with the goofy red line around the 
outside?  At this point, we pause for a brief detour   

 I have found that spatially continuous data 
frequently does not come with information on 

the domain R  over which the data is collected – i.e. it often 
comes without a boundary! 

 Estimation procedures require that we have a 

region/domain R  over which to make predictions.   
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We could just use either a rectangle which includes all 
observed points or use a convex hull, but either process is 
less than satisfying (especially when we know, for example, 
that the domain is an island – we don’t want to estimate values 
out in the ocean . . .) 

this pictures uses the R-functions  chull(), rect(), and 

polygon() – see example in Vancouver_outline.R.txt.  

For humans, drawing an outline is a natural process.  
However, it’s quite difficult to get a computer to do the same 
thing – it follows ‘crevices’ where we would naturally continue 
with a smooth boundary. 
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SO : I’ve written a crude, first-pass R-function called 
outline() that does the following :  

1) Duplicate the data set 8 times at a specifed 
‘smudge’ distance at 45o intervals around the 
original points (equivalent to duplicating the 
dataset at all surrounding grid points a a fixed 
‘smudge’ distance).  This ‘fills in’ the dataset and creates 
a boundary around the original points.  Bigger ‘smudge’ 
equals bigger boundary. 

2) Perform quadrat counts on the data with a specified grid 
size.  Fewer grid points makes for a smoother, but less 
detailed plot. 
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3) Look at the matrix of quadrat counts.  The idea is to move 
around the outside and avoid zero points.  The algorithm 
is as follows : start at one point that is furthest to the left.  
Move to the first non-zero 
grid point checking in a 
counter clockwise fashion 
but start checking at the 
point that is 45o counter-
clockwise past whichever 
direction we just came 
from. 

0 0 0 0 0 0 0 

0 2 3 0 3 3 0 

0 0 1 3 3 0 0 

0 0 4 3 3 0 0 

0 1 2 6 3 2 0 

0 2 5 2 3 3 0 

0 0 3 3 0 4 3 

0 0 0 0 0 0 0 
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Outline in R.  The R script is online at  
http://reuningscherer.net/fes781/rscripts/outline.r.txt  Just includes 
this link in your code to define the function.   See example here : 

http://reuningscherer.net/fes781/rscripts/Vancouver_outline.R.txt 
 

(Pause for R simulation to see how this function works) 

NEXT : if we have an outline, wouldn’t it be nice to get this into 
ArcGIS as a polygon so we could use this for kriging? 

The R package shapefiles does just this!  An example for 

the Vancouver island data is in the file above.   

Final comment : to get data into ArcGIS, save the file as a 
.DB4 file.  This can be read by ArcGIS. 

 

Back to our regularly scheduled lecture topic . . . 
 

http://reuningscherer.net/fes781/rscripts/outline.r.txt
http://reuningscherer.net/fes781/rscripts/Vancouver_outline.R.txt
http://cran.r-project.org/index.html


FES781b Spatial Prediction - JDRS 15 

 
We begin our discussion of how to model spatially 
continuous data – that is how to make predictions using 
models that may account for spatial correlations between 
measurements. 

 
Notation – I find MBG’s notation a bit confusing at 
this point (see page 134, Section 6.1), so let me 
elaborate on our cast of characters. 
 
 

Say hello to our hypothesized model!  
 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

 
What is this stuff? 
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 Nxxx ,..., 21  : our observed spatial locations 

 

  id x:  - the mean which depends on ix  (location) and 

d  (covariates beside location).  Could be constant, sloped, 
quadratic, dependent on covariates like slope/aspect, etc. 
 

 )(.S   - the signal AFTER we remove the mean trend .  The 

realization of a stochastic process (some continuous 
quantity).  Specifically, we try to observe at locations

Nxxx ,..., 21 .  HOWEVER, we don't get to actually 

observe )(),...(),( 21 NSSS xxx .   

o 
2   - the variation of )(.S  

o  u  = the correlation of observations in )(.S  that are a 

distance uapart 

    iiii ZuSdY  ),,,0(:)( 2 xxx
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    iiii ZuSdY  ),,,0(:)( 2 xxx  

 

 iZ  - random measurement error.  We assume 

 2,0~ NZi  and the iZ  are uncorrelated with each 

other and with  )(.S . 

 

  Y  - the response variable we actually get to observe – 

the noisy version of )(.S  after we remove the mean  

 
Example : Kansas Geological Survey   
(see  http://www.kgs.ku.edu/Tis/surf3/s3trend2.html  ) 

 
  

http://www.kgs.ku.edu/Tis/surf3/s3trend2.html


FES781b Spatial Prediction - JDRS 18 

Surface with trend )( iY x   Modeled Trend  id x:  

 

 
 

Stationary Mean Zero Stochastic 
process + noisy errors 

  ii ZuS  ),,,0( 2 x  
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Our Goal now is to make predictions at some NEW 
locations.  So, more notation . . . 

 
 R  : the domain – the region over which we observed locations 

Nxxx ,..., 21   

 x  (not ix ) : a new location in the domain A where we would 

like to predict )(.S  

 

  xT  - (that's T  for target).  Our estimate of )(.S  at x  - that 

is  xST   .   I'll note here I'm not clear why MBG defines 

both )(.S  and  .T  

 

  xT̂  - our actual estimate of )(.S  at the point x .  This is 

based on the observed values )(),...(),( 21 NYYY xxx   (This 

is like   xŶ  without the mean) 
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SO : GOAL is to get  xT̂  (i.e.  xŶ )) - 

our estimate at a NEW, UNOBSERVED 

LOCATION in R  
 

 

 
 
Let's look further at our model :  
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    iiii ZuSdY  ),,,0(:)( 2 xxx  
 

 

 

 
 

  

First order 
characteristics 
 
i.e. the MEAN of a 
process – is the 
mean going up, 
down across a 
region in some 
large-scale, 
predictable 
manner?   
 

Second order characteristics 
 
i.e. spatial CORRELATION / VARIANCE 
accounts for smaller scale variability.  

Expressed as   ixSVar .  If there is no 

spatial correlation, then 

   2IxSVar  (that is, for a single 

observation,    2ixSVar  

(variance is constant), and covariance beween 

any two points is      0, ji xx SSCov  

Errors 
 

Note that  id x:  and   ixSVar  are functions of ix  - they 

may change at each location ix  
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Where we’re headed : if we make certain 
assumptions about the structure of 

 id x:  and   ixSVar  (which may or 

may not be reasonable), we can achieve 
 
 
 

OPTIMAL SPATIAL 
PREDICTION  

(called kriging – optimal means smallest 
possible errors) 

 
 
 
Of course, this kind of Nirvana is not achieved easily – there 
are several steps along the way . . 
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For starters, let’s suppose that     2IxSVar   (that is, 

there is NO spatial autocorrelation – only first order trends) 

How to estimate    ii dYE xx :)(  ? 

 
Spatial Prediction  

Means only 
 
Here are some methods : 
 

1) Trend Surface Analysis (or Global Polynomial 
Interpolation). Fit a first or second order polynomial using a 
linear model or using Maximum Likelihood to estimate a 
surface). We’ll see more examples of this later . . .  

2) Inverse Distance Weighting or Interpolation 
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Inverse-Distance Interpolation 
 
 Suppose we want to make predict the value of ()Y  at some 

new location 0x .   

 

 Inverse Distance Interpolation takes a weighted average of 

the values of ()Y  at points around 0x  such that near values 

have more influence than far values : 
 

 













N

i

p

i

N

i

p

ii

d

dY
T

1
,0

1
,0

0

)(x
x  

id ,0  is the distance from 0x  to ix   and p  is the weighting 

power. 
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 Usually powers of p  between 1 and 3 are used, and higher 

powers give further points less weight in the calculation. 
o p=1 is a linear decreasing weight (Euclidean distance) 

o p=2 is a quadratically decreasing weight (squared 

Euclidean distance) 
 

Example : use IDW to get estimated pH at center point with 
p=1 : 
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 In practice, most programs use only points within some 

neighborhood of 0x  for making predictions (just for ease of 

computation) 
 
This method is simple, but it 

 Ignores spatial correlation 

 Tends to produce a “Bull’s Eye” pattern 
around observed points 

 
Example : Smoky Mountain 
pH Data.   
At right is an example of Inverse Distance Weighting for 
the Smoky Mountain Data using ArcGIS (use the 
Geostatistical Analyst  - example in class, including Trend 
Surface Analysis, called ‘Global Polynomial Interpolation’). 



FES781b Spatial Prediction - JDRS 27 

 Inverse Distance 
Weighting in R.  
Load the gstat 

package and use the 
idw() function.  This is a 

somewhat tricky function, so 
I suggest you check out the 
script I used to make the plot 
above, online as 
Example_IDW.R 

http://reuningscherer.net/fes781/rscripts/example_idw.r.txt  
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http://reuningscherer.net/fes781/rscripts/example_idw.r.txt
http://cran.r-project.org/index.html
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Example : Lancashire Radon Data.  No evidence of 
large scale variability in radon levels. -  a few high ‘spots’ 
– definite tendency toward ‘bull’s eye’ effect. 

0 2000 4000 6000 8000

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

Inverse Distance Weighting for Radon Data

Easting

N
o
rt

h
in

g



FES781b Spatial Prediction - JDRS 29 

The next step on our path to Optimal Spatial 
Prediction Nirvana is to begin to consider data that 
may contain spatial autocorrelation –  
 
 
 

That is   xSVar  has some non-zero structure on the 

diagonal entries.  To make this a feasible goal, we assume we 
have a  
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STATIONARY PROCESS 

This means that  
 

   2ixSVar   (i.e. for any particular location, 

the variance is a fixed, constant value, not a function of ix ) 

 

I.e. the variance of the process are constant over the entire 

domain A 

AND :  

  )()()(),( 22
uxxxx jiji  SSCov  

 
I.e., the Covariance is dependent only on the difference vector 
u between locations, not on the locations themselves.   
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If the Covariance only depends on the length of u, (i.e. not the 

DIRECTION of u ) uu , the process is isotropic. 

 
NOTE :  when authors say stationary, they usually mean 
stationary and isotropic. 
 

NOW :  we want to see if there are patterns of spatial 

autocorrelation among our observations 

)(),...(),( 21 NSSS xxx   (after having accounted for any 

mean trends – see page 10) : That is, are observations near 
each other more similar than observations further apart? 
 

 
Let’s think about this.   A natural way to examine the 

similarities between values of  S  at two locations 

ji xx ,  is to take the differences : )()( ji SS xx  .   
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This difference is just another random variable (i.e. 
differences of random variables are themselves random 
variables. 
 

SO : What are the mean and variance of )()( ji SS xx  ? 

 
In general, we couldn’t say much more about this, since our 

answer would depend on the locations ji xx , . 

 
HOWEVER : we’re assuming 
 

STATIONARITY! 
SO :   
 
  



FES781b Spatial Prediction - JDRS 33 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

 

000))()((  ji SSE xx  

 
  

  

Already took out mean 
trend so mean of S() is 
zero! 

Stationarity means this is 
only a function of the 

distance u, called the 

spatial lag   
 

! VARIOGRAMLTHEORETICA












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jiji

ji






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 u  (gamma) is thus half ‘o variogram or a semi-variogram. 

(however, MBG call a semi-variogram just a variogram, and 

this is what we'll call  u  from here on). 

 
So, in a sense, the whole stationarity thing 
is to make it possible to evaluate the 
quantities above.  Does this make 
you skeptical? 

 

 

SO : A Theoretical Variogram is a function which 

describes the nature of spatial dependence between 

locations.  Stationarity and Isotropy mean this depends 

only on the distance u between locations! 
 
 

http://www.animationfactory.com/animations/creatures/faces/109b3a/
http://www.animationfactory.com/animations/creatures/faces/109b3a/
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Note : the semi-variogram  u  is a function of u .   

According to Merriam Webster :  
 

-gram : noun combining form.  Etymology: Latin -

gramma, from Greek, from gramma.   drawing : 

writing : record Examples : telegram, histogram 
 

Shouldn’t  u  be a drawing or picture?   

 
Well . . . semi-variograms are almost always plotted. 
 
NOW : Why 
might a sample 
variogram look 
like this? 

 

u

)(u
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Properties of the Theoretical Variogram 
 

Let’s suppose that )(.S  is a process such that ‘near things are 

more related than far things’, i.e we suppose that  
 

    0)()(),(



u

uSSnCorrelatio  jiji xxxx  

 
In fact, we suppose that for u  > some fixed range, the 
covariance is effectively zero.  This means that our variogram 

will approach a fixed sill 
2  : 

 

     22 )(1 



u

uu  
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NOW : for points that are right next to each other (i.e. the same 
location) in our stochastic process, the correlation is 
 

  1)0()(),(  ii xx SSnCorrelatio  

 

so that      0110 2    
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Properties of the OBSERVED Variogram 

 
Remember our proposed model : 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

 2,0~ NZi  

 

  
 

 

Y! of  VARIOGRAM













       

2       

22       

2)(12       

)())()((       

))()((       

))()((

2

22

u

u

u
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




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 We assume that S( ) 
and Z ( ) are 
independent of each 
other, AND that the Z( 
)'s are independent of 
each other 
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Who cares!?! 
 
 
 

This means that while the variability of )(.S  at a single point is 

  00  , the variability of )( Y at a single point is 
2 . 

 

The variance of  )( Y  at a fixed location 
2 is 

called the nugget effect 
 

 
 
This can be interpreted as measurement error at a single point, 
or as variability below the threshold of the measurement scale. 
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Sometimes, there is discussion of the partial sill, the 

difference between the sill and the nugget effect  (i.e. 
2 ) 

 
 
 
 
 
 
 Partial Sill = 

2   

u

Range / Span = Region where  uY  increases 

Sill = 
2 +

2  

Nugget =
2  

 uY



FES781b Spatial Prediction - JDRS 41 

The corresponding covariogram )(uYC  is simply  

 

  )(22 uuC YY    

 

 
 
 
 

 

 
 
 
 

  

u

 uCY

Range / Span = Region where  uCY  decreases 

Nugget = 
2  

Partial Sill = 
2  

0 

Sill = 
22    
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Estimating a Variogram 
 
Since we don’t actually have the true variogram  uY  (it’s 

Greek – god’s speak Greek), we have to estimate it. 

 

Method of Moments estimator : The variogram can be 
thought of as an expected  value or average : 

        ])()([
2

1
)()(

2

1 2

jijiY YYEYYVaru xxxx 

 
In this case, we can take averages of the squared differences 

in )( iY x  values between pairs of points that are within some 

fixed lag apart for a series of lags : 
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    ]))()([(
)(2

1
ˆ

],[

2
 

 laguuxx
jiY

ji

YY
un

u xx  

 

for  ,....3,2,,0 laglaglagu   and where )(un  is the number 

of pairs within a particular distance range. 

 
The next pages shows an example of how this averaging 
would work for 7 locations (42/2=21 total pairs of points) : 

values in red italics are the values of )( iY x . 
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Distances between lag and 2*lag 

3)( un
3.1 3.1 

3.6 

2.6 

3.0 

3.5 

2.9 

3.1 3.1 

3.6 

2.6 

3.0 

3.5 

2.9 

        3.5-2.93.0-2.93.1-3.1
3*2

1
)0(ˆ

222
         3.5-3.63.6-2.93.5-3.0

3*2

1
)(ˆ

222
lag

Distances between 0 and lag 

3)( un
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Distances between 2*lag and 3*lag Distances between 3*lag and 4*lag 

4)( un 3)( un3.1 3.1 

3.6 

2.6 

3.0 

3.5 

2.9 

3.1 3.1 

3.6 

2.6 

3.0 

3.5 

2.9 

     

 
  

3.5-2.6

3.0-2.63.0-3.63.0-3.1

4*2

1
)2(ˆ

2

222













lag         2.9-3.12.6-2.93.1-3.0

3*2

1
)3(ˆ

222
lag
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Distances between 4*lag and 5*lag Distances between 5*lag and 6*lag 

2)( un6)( un
3.1 3.1 

3.6 

2.6 

3.0 

3.5 

2.9 

3.1 3.1 

3.6 

2.6 
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3.5 

2.9 

     

     
  

2.9-3.13.5-3.13.6-3.1
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6*2

1
)4(ˆ

222

222













lag       2.6-3.13.1-3.5

2*2

1
)5(ˆ

22
lag
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Variograms in R.  There are numerous R-packages that make 
variograms, all of which I find somewhat less than satisfying.  I’ve 
finally settled on geoR as the best package.  This uses the 

function variog() which was used to produce the plots below.  

Choosing option=("cloud") gives a variogram cloud, essentially 

setting the lag to zero.    The file online that contains the R-code is 
Example_Variogram.R.txt 

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt  

 
 
Example : Smoky Mountain pH Data.  The 
estimated variograms below use a lag distance 
of 4.5 and a lag distance of 10.  The lag of 10 
produces a somewhat smoother variogram.  
Neither shows strong evidence of a nugget effect.  However, 
both  suggest that pH values at near locations are more 
correlated than values further apart. 

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt
http://cran.r-project.org/index.html
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Example : Lancashire Radon Data.  For 
this data, larger lags are appropriate since 
the scale is larger.  Here, a lag of 10 is 
about 100 meters (I think!).  The semi-
variograms are basically flat – i.e. there is 
no evidence of any spatial correlation. 
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Models for Stationary (Isotropic) Variograms 
 
 We’ve already talked about properties of variograms.   

 Our estimated variogram will not necessarily (i.e. probably 
won’t) satisfy these properties (i.e. it won’t be monotonic 
increasing, for example!) 

 As in other estimation procedures, we can use a parametric 
model to try to ‘fit’ the estimated variogram and evaluate the 
model fit. 

 A parametric model will also allow us to use information on 
spatial correlation to make spatial prediction (ah, now that 
would be useful  .  .  .) 

 Here are some models commonly used : 

Formulas for these (and a few other) variogram models are on p. 51-56 of MBG, 
p. 278-280 of Waller and Gotway, p. 440-442 of the SAS Mixed Model manual, 
etc.  However, here are some properties of each :  
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Spherical 
 
Linear near the origin, reaches 

a constant sill for 
sau   (the 

range) 
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Exponential 
 
Rises more slowly from the 
origin than spherical and 
approaches the sill 
asymptotically (never quite 
gets there) 
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Gaussian 
 
Parabolic near the origin, 
rises to sill asymptotically, but 
more rapidly than the 
exponential.  There are some 
‘issues’ with this model 
discussed on p. 278 of Waller 
and Gotway 
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Stable 
 
This is a family of models 
which includes exponential 
(alpha=1) and Gaussian 
(alpha=2).  Approach sill 
asymptotically, behavior near 
origin determined by alpha. 
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K-Bessel (Matern)  
 
Another family of models that 
approach sill asymptotically, 
behavior near origin 
determined by alpha.  
Exponential and Gaussian are 
members of this family as well. 
 

0 20 40 60 80 100

0
2

4
6

8
1

2

K-Bessel (Matern)

u

la
m

b
d

a
(u

)

alpha=1

alpha=2



FES781b Spatial Prediction - JDRS 56 

Cardinal-Sine 
 
A member of a family of hole-
effect models.  Good for 
processes with negative 
spatial autocorrelation of 
periodic variability. 

 
 

 
ASIDE : The choice of variogram model has little 

effect on the final spatial prediction (except maybe 
Cardinal-Sine)– lag size has a much more profound 

effect (like radius in kernel smoothing . . .) 
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Fitting Models to Variograms 
 

 The most comment method for fitting a model to an 
estimated variogram is to use Non-linear Least Squares 
Regression (NLSR). 

 This fits a model to the data by minimizing 

 

    ;))(())((ˆ
1

2
 


K

j
YY juju   

 
Here, K  is the number of lags and   represents the shape 
parameters for each model (such as sill, nugget, range, etc).   
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This estimate has two problems : 
 

 Variance is not constant from one lag to the next (since 
each lag contains different numbers of pairs of values) 

 Values are likely correlated. 
 
Cressie (1985 – see W&G p.285) suggested using a 
minimization that accounts for these problems by making use 
of the variance-covariance matrix of the data. 
 
 
Examples : Smoky Mountain pH Data.  This uses the 
estimated variogram with lags of size 10.  Three models 
were tried : exponential, Gaussian, and Matern (Kappa=0.5).   
The exponential and Matern give the best (and basically identical) results.  
This uses Cressie’s correction. 
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Examples : Radon Data.  This uses the estimated variogram 
with lags of size 10.  All models fit equally poorly! 
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Modeling Variograms in R.  The function variofit() fits 

parametric models to pre-calculated variograms.  The function 
lines.variogram can be used to add these fitted values to empirical 

variograms.  The calculations I used for these example datasets are given in 
Example_Variogram.R 

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt  

 
Now : let’s go look at the Smoky Mountain’s pH data in ArcGIS 
(10.1).   
 
Make sure you have the GeoStatistical Analyst Toolbar 
displayed (Customize  Toolbars  

Geostatistical Analyst) 

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt
http://cran.r-project.org/index.html
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First, we look at a 
(semi)variance cloud : 
this plots the squared 
differences  

2))()(( ji YY xx   for 

every pair of points 

 ji xx , .  You can get 

this plot using 
GeoStatistical 

Analyst  Explore 

Data  

Semivariogram / 

Covariance Cloud.  Select the correct layer and Attribute 

(pH in this case).  This plot isn't overly helpful really. 
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To get an estimated and fitted variogram, use 
GeoStatistical Analyst  GeoStatistical 

Wizard…  Then choose kriging and select PH as the 

Data Field and ask for an ordinary kriging predictive map.  This 
gives the 
following 
window : 
 

This has many, 
many more 
points than the 
estimated 
variograms we 
made in R.  
What’s up with 
that? 
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Anisotropic Semivariogram Modeling 
 
 It may be that correlations observed among the 

values of (.)Y  are not the same in every 

direction (think about water flow, airflow, surface 
gradients, etc.) 

 

 In this case, variograms calculated in different 
directions may not yield the same results. 

 
Estimating Anisoptropic Variograms :  The same formula is 
used  

 

  ]))()([(
)(2

1
)(ˆ

]
2
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,
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2
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However, now u is a vector, not a fixed distance.  The 
estimated variogram only considers differences between pairs 

of  points  ji xx ,  that are within some tolerance of the 

direction of u AND such that the points are within the lag 
interval : 
 
 
 

 
 
 
 
 
 
 
  

Pairs within 1 lag of 0 degrees 
(tolerance = 45 deg) 

Pairs within 1 lag of 45 
degrees (tolerance = 45 deg) 
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GIS simultaneously plots every estimate  

  ]))()([(
)(2

1
)(ˆ

]
2

1
,

2

1
[

2
 

 laglagxx

jiY

ji

YY
n

uu

xx
u

u  

recalculated every 6 degrees or so between 0 and 180 
degrees.  This is why GIS shows so many points!  However, 
there is a way to change the direction of the variogram in 
ArcGIS (set Show Search Direction to TRUE and then free-
rotate using your mouse . . .) 
 
Examples : Smoky Mountains.  There is 
some evidence that variograms change with 
direction (look at the y-axes to note changes 
for 120 degrees).  Note that 0 degrees is the 
same as 180 degrees.  At 25 degrees, we see 
correlation effective over a longer distance (i.e. takes longer to 
get to the sill).  There is also a suggestions that we might need 
to take out a mean FIRST! 
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Anisotropic Variograms in R.  The function variog() which 

we used for general variograms takes three options  
unit.angle, direction,and tolerance which specifiy that 

a variogram should be fit only in a particular direction.  The calculations I 
used for the plots above are in Example_Variogram.R 

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt  

 
 

  

http://reuningscherer.net/fes781/rscripts/example_variograms.r.txt
http://cran.r-project.org/index.html
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WELL – It’s finally time to start talking 
about making spatial prediction using 
spatial correlation! 
 
Our Goal :  we seek the Nirvana of 
 
 

OPTIMAL SPATIAL 
PREDICTION  

(called kriging) 
 
 

 Named after South African mining geologist D.G. Krige who 
came up with basic concept (can pronounce with hard or soft 
‘g’ . . .) 
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 Basic idea : prediction at a point 0x  involves taking a 

weighted average of the observed values (just like IDW or 
kernel smoothing, etc). : 

 




N

i
iiKrig YaY

1
0 )()(ˆ xx  

ia  are the weights. 

 

 

 

 

 However : in kriging, the ia  weights account for correlations 

among locations by using the (co)variogram (ahh . . .) 
  

4x

3a
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 Many types :  

o Simple – process is stationary, mean=0 

o Ordinary – process is stationary, mean=constant 

o Universal – process is stationary after removing the 
mean=some predictable trend surface 

 

Here's how MBH writes the same thing :  (p.140, 6.14) 

 

     





N

i
iii Ya

SY

1
0

000

)(           

)(ˆ)(ˆ

xxx

xxx




 

I’ll just comment here that I think MBG is a bit confusing in that they 

simultaneously use )(.S to a be a mean zero stochastic process, and a 

non-mean zero process. In any case, think of )(.S as the SIGNAL (the main 

stochastic process with or without a mean surface) 
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Simple Kriging (MBG 6.2) 

Our model which assumes stationarity  and isotropy : 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

Furthermore, we're assuming that )(.S  and iZ are both 

Gaussian (normal). 

This means that our dataset )(),...(),( 21 NYYY xxx  

respresent observations from a multivariate normal distribution 

with mean vector  x,dμ  and variance 

IRV
222    

 

where the elements of R  are  jiijr xx   , the 

correlation between points i and j ! 
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NOW :  let’s suppose that we KNOW the mean  x,dμ .   

 

How could that be possible??   
 
As we discussed, we could fit a trend surface and 
remove the trend.  AFTER we’ve removed the 
trend, the residuals will have mean ZERO and common 

variance, say, 
2 . 

 

 
With Trend      Modeled Trend         Stationary, mean 0 

We'll fix this to include non-zero means a bit later . . .
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In this case, our model is now a mean zero process where Y = 
Signal + Noise  

  ii ZuSY  ),()( 2x  

 

And our estimate of )(.Y  becomes the same as )(.S  

 


N

i
ii YaSY

1
00 )( )(ˆ)(ˆ xxx  

Now : what is “optimal” spatial prediction?  

We want to choose weights ia  so that  KrigŶ   

1) Is Unbiased  

2) Has Minimum Mean-Squared Prediction Error 
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Unbiased : this means that on average, our guess is correct: 

 

      0ˆ
00  xx YEYE Krig  

This means that  

So : no matter what weights we choose, our estimate will 
be unbiased. 

So far, so good . . . 

Minimum Mean-Squared Prediction Error : i.e. MINIMIZE 
THE VARIANCE! 
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111
0 0*)()()(ˆ0 xxx

Since we assume 

Z,  have mean 0 
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Goal : minimize  

    00
ˆ xx SSVar Krig   

 

A few helpful reminders : 

  ),(2)()( YXCovYVarXVarYXVar   

And the Covariance is 

   )()(, YEXEXYEYXCov   

Now : I don’t usually do math, but I think in this 
case it may help : so hang on (and if you don’t like my version, 

see Isaaks and Srivastava Chapter 12 – other books skip too many details in 

my opinion) . . . . 
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    
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SSCovSVarSVar

SSVar

KrigKrig

Krig





  
 
This is just the usual rule for the Variance of a sum of random variables. 

 
NOW : Let’s solve each piece :  
 

 

This is just an expanded rule for 
the Variance of sums 
 
 
This is because we have a 
stationary process – we can 
express as the covariogram! 
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   2

0 xSVar  Since we have a stationary process!  
 



FES781b Spatial Prediction - JDRS 79 

    00 ,ˆ2 xSxSCov Krig
 

 

    

      

  

  
























































N

i
ii

N

i
ii

N

i
ii

N

i
ii

N

i
ii

N

i
ii

N

i
ii

Ca

YYCova

SEYEaSYaE

SEYaESYaE

SYaCov

1
0

1
0

0
1

0
1

0
1

0
1

0
1

2

),(2

*)(2*)(2

*)(2*)(2

,)(2

xx

xx

xxxx

xxxx

xx

 

 

  

Expand using formula 
for kriged estimate 
 
Next, use definition of 
covariance 

We're assuming Y has 
mean ZERO! 
 
Regroup and use 
definition of Covariance 
again 
 

Use STATIONARITY! 
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Put it all back together! 
 

    

     



 

N

i
ii

N

i

N

j
jiji

Krig

CaCaa

SSVar

1
0

2

1 1

00

2

ˆ

xxxx

xx


 

 

 
 
This is just a function of the covariogram  (or, equivalently, the 
(semi) variogram (we could substitute using 

  )(22 uuC YY      if we were so inclined . . .) 
 

This seems a bit messy – how about writing this squared 
prediction error in MATRIX FORM! 

http://www.mathacademy.com/administration/sponsors/ad_click.asp?ADID=3&URL=www.mathacademy.com/pr/minitext/anxiety/index.asp
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     0caCaa  2ˆ 2

00 xx SSVar Krig  

 

 

C   gives covariances (i.e. covariogram) between all pairs of observed 

points.  THIS IS EQUIVALENT TO IRV
222    in MBG 

a   is the vector of weights (that’s what we’re trying to optimize) 

0c   is the vector of covariances (covariogram) between all observed points 

and the new data point 0x  
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SO :  To minimize this, we differentiate with respect to all the 

weights Naaa ,...,, 21 , one at a time.  This gives the simple 

kriging equations  (there are N of these equations) : 
 

   i

N

j
jij CCa xxxx  


0

1

    ,      for Ni ,...,2,1  

 
OR : in MATRIX form  
 
 
 
 

 

 

FINALLY : Solving for the weights opta   (just multiply by the 

inverse of the covariance matrix 
1

C ), we finally have the simple 
kriging weights : 
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0cCa
1opt  


 

 

The optimal weights opta   depend on 

 C , the covariances between all observed locations  

 0c , the covariances between our new point and all other 

locations  

Because of stationarity, these covariances depend only on the 

distance vectors between locations, i.e. on the  

 

(CO)VARIOGRAM! 
 



FES781b Spatial Prediction - JDRS 84 

Of course, for REAL data, we don’t know the (co) variogram 
(remember, it’s a function). 
 
However :  we know how to  

 Calculate an estimated variogram 

 Fit a parametric model to the estimated variogram! 
 
This is why we went to all that trouble . . . to do kriging! 
 

 
SO : why are we doing this?  (back to page 70) 
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We’re trying to estimate the value of ()S at a 

new location 0x  as a weighted combination 

of the values of ()Y  at observed points : 

 


N

i
ii YaS

1
0 )( )(ˆ xx  

  
 

But : We now have our optimal weights opta  

 

SO : our estimate of the value of ()S  at one single point 0x  :  
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6x

MBG Notation 
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Now : You might think this seems like a lot 

of computation for just one point 0x  . . . 

 
However, notice that when kriging over some 

domain A 

 YC
1

 only has to be calculated once : it doesn’t depend on 

0x .   

 Only 0c  has to be calculated for each point 0x  : this is the 

covariogram relating 0x  to the set of observed locations 

Nxxx ,..., 21 . 
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Now : how about the uncertainty in our kriging estimate?  I.e., 
what is the actual expected error of our estimate? 
 
Back to the equation at the top of page 80, but now plug in the 
values for the weights that give Minimum Expected Unbiased 
Error to get the KRIGING VARIANCE! 
 

  
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 optoptopt

KrigSVar x

 

 

 

This is equation 6.15 in MBG on page 141 
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Notice that if our data actually has NO spatial correlation, our kriging 
variance is just  2   : basically, we can achieve a small reduction in 
estimated variance by accounting for covariance! 
 

If instead we want uncertainty in (.)Y , then we simply add the 

variance of (.)Z  : 

 

  2222
ˆ  

1

IRrKrig  

 
SO!!!!  If our prediction errors are approximately normally 

distributed, a 95% Prediction Interval for )( 0xY  is  
 

 

)(ˆ96.1)(ˆ
00 xx KrigKrigY   
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Maybe it’s time for a bit of data . . .  
 
Example (made up).  Consider five observed points and one point 
where we’d like to make an estimate : 
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Points X1 X2 Y 

1x  5 6 3 

2x  3 5 2 

3x  5 2 0 

4x  7.8 2.2 -2 

5x  10 5 -3 

0x  5 5 ? 

0 2 4 6 8 10 

0 

2 

4 

6 

8 

10 

Values in italics are Y values 

X1 

X2 

x1 

x2 

x3 x4 

x5 
s0 
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Notice that the  Y  sum to zero (as if they are the residuals after 

removing a surface trend).  Also, the sample variance is 5.6  (our 

estimate of 
22   ) 

 
Suppose that we happen to know that points have an exponential, 

isotropic variogram with partial sill = 6 (i.e. 
2 ) and range = 8 :  

   8316 u

S eu   
 

(typically, we’d estimate and fit a variogram model) 
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Now : we need distances between observed points and distances 

between 0x  and the observed points 

 

 

Distances among 
observed points 

       

 

1x  2x  3x  4x  
 

Distances from 0x   

to each point 

2x  2.2      
1x  2x  3x  4x  5x  

3x  4.0 3.6    
0x  1 2 3 4 5 

4x  4.7 5.6 2.8         

5x  5.1 7.0 5.8 3.6        

 

 

Since we have isotropy and stationarity, this is all we need to 
calculate the variogram values for each pair of points : 
 



FES781b Spatial Prediction - JDRS 93 

 

 

 

0 3.36 4.68 4.98 5.1 

3.36 0 4.44 5.28 5.58 

4.68 4.44 0 3.9 5.34 

4.98 5.28 3.9 0 4.44 

5.1 5.58 5.34 4.44 0 
 

 

 

 

 

 

 

SO : our kriging estimate at the point 0x =(5,5) is  
 

 

 

0.31 

0.53 

0.68 

0.78 

0.85 

Matrix C  of Variogram values 
between observed points 

   81.5*3

15 16  eC xx

9.1)(ˆ
0  

YCc
1

0xKrigS

Vector 0c  of Variogram values 

between observed points and 0x  
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And : our estimated kriging variance at this point is 
 

65.05.6)(ˆ
122

0

2 


 

00 cCc xKrig  

 

SO : a 95% prediction interval for 0x  is  
 

 

 

 

 
Now we just have to do this for every other point in 

our domain A . . .  Which is why we have 
computers. 
  

)7.6,9.2(6*96.19.1 
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Kriging in ArcGIS : GeoStatistical 

Analyst  Geostatistical 

Wizard.  Then choose Kriging (and 

make sure you choose the correct 
attribute).  For now, we’ll do simple 
kriging.  Prediction Map will give the 

estimates  KrigŶ  over the entire domain 

A;  Prediction Standard Error 

Map will give  Krig̂  over A. 

 

Examples : Smoky Mountains pH data.  Last 
time we fit several variograms to fit this data.  
Seems like an exponential variogram with a  lag 
of about 10 worked reasonably well.  For the 
moment, we just fit a model that is isotropic (same in every 
direction) 
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Now : in practice, GIS will 
cut-off the number of 
neighbors to use in 
making predictions at a 
particular point (to make 
computation easier – this 
acknowledges that far 
away points don’t have 
much influence).  This is 
specified in the Number 
of Neighbors to include.   

 
Furthermore, GIS will ensure that a minimum number of points 
are included in each of several directions : this is set by the  
Shape Type. 
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The idea is to protect against the effect of the original data point 
sampling scheme (transects, grids, etc).  The pictures below 
(p.182-183 from the ArcGIS Geostat manual) show an example : 
 

  
 
 
 
 
 
 
 
 
 
SO : Here are the results!  Much smoother than the Inverse 
Distance Map, and now we have estimates of the errors!  Note 
that the errors increase to about 0.43, and errors are largest 
furthest from observed values.  Incidentally, the standard 
deviation of all pH values is 0.44! 
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Predicted 
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Error 
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NOW :  Let’s revisit the question of anisotropy.  We saw last 
time that there was evidence that covariance was not the same 
in every direction : it seems that covariance is higher in the 
direction of about 300  (this means that in the direction of 300, 
the variogram rises to the sill more slowly, while at about 1200, 
the variogram rises to the sill more rapidly. 
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We can account for 
this by using a 
search 
neighborhood with 
an elliptical shape 
that has a major 
axis parallel to the 
direction of highest 
covariance.  
Practically, this 
means clicking the 
anisotropy button in 
ArcGIS : 
 
This shows the 
direction in which there seems to be greater correlation 
 
Notice that the resulting maps have contours that are stretched in the 
direction of the major elliptical axis. 
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Predicted 
Surface 

Error 
Surface 
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Ordinary Kriging (MBG 6.2.2)  

ONCE AGAIN : Our model which assumes 
stationarity  and isotropy : 

    iiii ZuSdY  ),,,0(:)( 2 xxx  

In Simple Kriging, we assumed that  x,dμ  =0. 

NOW : we move slightly further and assume that the mean is 

some UNKNOWN constant   x,dμ .  In fact, the mean is 

not required to be constant over the entire surface – it is 
assumed to be constant over all points that contribute non-zero 
weights to estimation at a new point. 

 
  



FES781b Spatial Prediction - JDRS 104 

We still want  KrigŶ   

1) Unbiased  

2) Minimum Mean-Squared Prediction Error 

Unbiased : this means that on average, our guess is correct: 

       00
ˆ xx YEYE Krig  

This means that  

SO : our kriging prediction must have  
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i
ia
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 i.e. weights must sum to 1. 

    








N

i
i

N

i
ii

N

i
iiKrig aYEaYaEYE

111
0 )()()(ˆ  xsx



FES781b Spatial Prediction - JDRS 105 

Minimum Mean-Squared Prediction Error : we still want to 
minimize 

    00
ˆ xx SSVar Krig   such that  



N

i
ia

1

1 

 
Minimizing with a constraint requires the use of a Lagrange 
multiplier m  :  
 

     





 



N

i
iKrig amSSVar

1
00 12ˆ xx  

 
 
 
 
 
 
 

This is just adding zero! 

The 2 is just to make things nicer 
later when we take derivatives . . 

This is the same calculation as on 
page 44. 
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    
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At this point, the calculations are the same as on page 77-80, with 
one additional term.   
 
  
 
 
 
 
 
This is again a function of the COVARIOGRAM between all 
observed pairs of points and between our new point and all 
observed points. 
 
SO :  To minimize this, we differentiate with respect to all the 

weights Naaa ,...,, 21 , and with respect to m .  This gives the 

ordinary kriging equations : 
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   i
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
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  ,   for Ni ,...,2,1  
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N

i
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1
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In matrix form : 

 

or more concisely :  00 caC


  

The +’s indicate that these matrices are ‘expanded’ by a row/column 

 to account for the unbiasedness constraint 
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Solving for opta  and m  gives the ordinary kriging weights : 

0cCa




 1

opt  

 
Basically, the same  results as for simple kriging, but with an 

expanded matrix C  which contains an unbiasedness constraint 

that the weights sum to 1! 
 

As before, we have  
 

 

 

 
 
 
FINALLY : estimate of errors includes expanded weight vector. 
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Simple Kriging vs. Ordinary Kriging 
 

 
 
What’s really going on here?? (MBG, p. 137) 

 
Simple Kriging 
 

 We “simply” estimate an overall CONSTANT mean as 

Y̂  (we estimate the mean as the sample mean of all 

the Y values) 

 We subtract this constant mean and krig the residuals 

̂Y  

 Weights are not constrained to sum to one. 
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Ordinary Kriging 
 

 We estimate an overall CONSTANT mean using the 
generalized least squares estimator : 

  YV11V1
11  

1
̂  

 

 This is equivalent to requiring the weights to sum to one. 
 
Ordinary Kriging in ArcGIS : GeoStatistical Analyst 

 Geostatistical Wizard.  Then choose Kriging 

and Ordinary Kriging. 

 
Examples : Smoky Mountains pH data.  Here 
are results of ordinary kriging (still using 
anisotropic exponential variogram with lag of 10).  
Results are almost identical to that of simple 
kriging.  
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Ordinary 
Kriging 

Simple 
Kriging 
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Examples : Lancashire Radon Data.  Here are results of 
ordinary kriging (using isotropic exponential variogram).  This 
is a pretty flat surface (i.e. no real evidence of trends.) 

Simple 
Kriging 
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Kriging Weights (MBG, 6.4)  

 
MBG has a very nice discussion of the effect 
of changing various parameters on the kriging 
weights through examples. I’ve endeavored to 
reproduce several of their figures (approximately) and have 
also created some visual ‘simulations’ so we can see what’s 
going on. The file is online 
http://reuningscherer.net/fes781/rscripts/KrigingWeightsExample.R.txt  
 
1)  Effect of Location 

 
a. Our variogram model generally means that near 

observed data points have more effect than far data 

points on the estimate of Y at a new location (see first 

column below). 
 
  

http://reuningscherer.net/fes781/rscripts/KrigingWeightsExample.R.txt
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b. Proximity Effect – we would expect that if two observed 
data points are near each other, they themselves are 
correlated. Consequently, kriging down weights 
multiple observations near each other (since we 
aren’t really getting additional independent pieces of 
information) (see second column below). 

 
c. Collinear Masking Effect – Under many Matern 

covariogram models, if two observed points lie along 
line from a new location, the nearest observed point will 
have a large positive weight, while the further collinear 
point may have a negative weight (see third column 
below). 

 
The plots below were created using both simple kriging and 
ordinary kriging. In each case 
 

0 , 12  , 02  , 8.0 , 5.1  
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2) Effect of Location 
 

a. As the range/span increases, the weights spread their 
influence over a longer range (this corresponds to large 

values for  in the Matern function) 

 
b. As the range/span decreases, the weights of nearby 

observed data points decrease to zero (for simple 
kriging) or all become equal 1/n for ordinary kriging. 

 
The plot below was created using simple kriging for 10 points 
on a line in one dimensional space.  Prediction is made at 

the point 5.00 x .  See R script for a simulation.  In each 

case 

0 , 12  , 02  , varied , 5.1  
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3) Effect of the Nugget 
 

a. As the nugget increases, all the weights have less effect 
(since the signal is masked by noise). 
 

The plots below were created using simple kriging for 10 points 
in one dimensional space.  Prediction is made at the point

45.00 x .  See R script for a simulation.  In each case 

0 , 12  , varied2  , 1.0 , 5.1  
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Probability/Indicator Kriging 

Suppose that we want to model the probability of 
an event (like the probability that pH is > 7).    In 
this case we are modeling an exceedance 
probability :  

  NYYYyY ,...,|Pr 210x  

We can create a kriging surface for this exceedance probability 
by ‘kriging’ the indicator variable  

  yYI 0x  based on   yYI ix   (here 

  yYI ix  = 1 if   yY ix , 0 otherwise) : 

     


N

i
iKrig yYIaI

1

ˆ
i0 xx  
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Proceed with ordinary 
kriging as before, but using 
the values of 

  yYxI is  rather than 

 ixY . 

 

Results for pH Data from 
ArcGIS:  
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Universal Kriging  

 

Suppose that we believe that there is an 
underlying trend in our surface – say 
linear or quadratic (see last time).  
Universal kriging fits a model which 
simultaneously removes a trend and 
krigs the desired surface. 
 
Without doing all the details, think about ordinary kriging.   
 

 In ordinary kriging, we used Lagrange multipliers to add a 

constraint that the weights had to sum to 1:  


N

i
ia

1

1.   

 This constraint uses an expanded covariance matrix matrix 

C  to calculate the weights.   

 



FES781b Spatial Prediction - JDRS 123 

 In Universal Kriging, this matrix is further expanded to add 
constraints which will remove linear or quadratic trends 
(or cubic or . ..) 

 

 See p. 196 of W&G for matrix details. 
 

In GIS, using the 
GeoStatistical 
Wizard, click on 
Universal Kriging, 
then choose order 
of trend 
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Here are results for the pH data removing a linear trend : This is 
somewhat different than the results from simple kriging.  Also 
notice that the errors are not necessarily smaller than those for 
simple kriging (legend is a bit whacky – 12-29???, given that max 
should be about .43) 
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If you’re using GIS to do variograms, 
kriging, etc., you should check out Using 
ArcGIS Geostatistical Analyst for ArcGIS 
9.  I haven’t found an updated version for 
ArcGIS 10 – however, the details are very 
similar. 
 
I've put this online as a pdf file 
http://reuningscherer.net/fes781/Resources/geostat_analyst.pdf  
 
Here is a shorter tutorial (similar information) 
http://reuningscherer.net/fes781/Resources/geostatistical-analyst-tutorial.pdf 

 

 
 
 

  

http://reuningscherer.net/fes781/Resources/geostat_analyst.pdf
http://reuningscherer.net/fes781/Resources/geostatistical-analyst-tutorial.pdf
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Kriging  (Part 2) 
 

Kriging in R :  A word of warning :  R is like 

the wild west.  Sometimes you strike it rich.  

Other times, you get shot in the gut. 
 
 Kriging in R.  There are two packages which will 
perform kriging in R.  We've so far used the package  geoR for 

variograms, and it also works quite well for kriging.  However, it is 
also worth discussing the package gstat which has several options not 

available in geoR.  Of course, this requires that we learn about variograms 

in gstat (since they're not compatible with geoR).  We'll look at examples 

in both packages. 
 
 
 
  

http://cran.r-project.org/index.html
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Two files we'll discuss today (both online) : 
 
KrigingSmokyMountaingeoR.R.txt.  GeoR is nice in that it allows use of 
maximum likelihood to fit a trend surface and a variogram model 
simultaneously.  However, we'll see this can have mixed results in our 
example today . . . 
 
http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingeoR.R.txt  

 
KrigingSmokyMountaingstat.R.txt – gstat has nice option for cross-validation 
(coming up), and also has nice graphics options. 
http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingstat.R.txt 

 
 
  

http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingeoR.R.txt
http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingstat.R.txt
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Example : Smoky Mountain pH data in R using gstat.  This 
is a sample variogram with a lag of 10, fit with an isotropic 
exponential variogram model.  Similar to what we’ve already 
seen . . . 
 
 
 
 
 
 
 
 
 
 
 
 
Here are the results of ordinary kriging : again, we’ve pretty 
much seen this before.  Shown here are two different graphing 
functions in R. 
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Ordinary Kriging Predictions for pH Data
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Here is an error map. 
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At this point, look at examples on Smoky Mountain pH data in 
geoR . . . . 
 
Why go to the trouble of learning R?!?!  Well, there are some 
types of kriging available in R that are not available in ArcGIS.  
For example . . .  
 

 
Suppose we want to get kriged estimates not at particular 

points but over regions : i.e. we don’t want to estimate ()Y  at a 

point; we want to get an average value of ()Y  over a region 

B (say a county or a census tract or a mining region or a 

stream).  We could just krig over ever point in B  and then take 
the average.  Or we could use . .  
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Block Kriging   
(see B&G, Chapter 6 or W&G p. 311-312) 

 
An Example : 
 
John W Kern, Kenneth O Coyle Global block kriging to estimate biomass 
from acoustic surveys for zooplankton in the western Aleutian Islands , Canadian Journal of 
Fisheries and Aquatic Sciences 57 pp 2112-2121  
 

Suppose we have a stationary, constant (but unknown) mean 

process ()Y  measured at the points Nsss ,..., 21  (basically the 

same setup as ordinary kriging).  We want to estimate ()Y  

over a region B  :  




N

i
iiKrig YaBY

1

)()(ˆ x  
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As in other types of kriging, we want  KrigŶ   

1) Unbiased  

2) Minimum Mean-Squared Prediction Error 
 

The math is similar to ordinary kriging :  using a Lagrange 
multiplier, rearranging and taking partial derivatives, we get the 
ordinary block kriging equations:  
 

   i

N

j
jij BCmCa xxx  

1

    ,      for Ni ,...,2,1  

 


N

i
ia

1

1 
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In matrix form :  

 

 ixBC  is the point-to-block covariogram (basically an 

average value of covariogram from a point ix  to every point in 

a block B) : 

 
 

B

dC

BC B

uxu

x
 

  
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In practice,  C  is unknown, so it’s estimated and modeled, 

and instead of calculating an integral, B  is discretized into 

points :  C  is then averaged over these points. 

 
By modifying the process above, one can also do universal 
block kriging, indicator/probability block kriging, etc. 
 
Example : pH data.  R Code is contained in the file 
http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingstat.R.txt 

.  Here are results for block of size 5x5. 
 
 

http://reuningscherer.net/fes781/RScripts/KrigingSmokyMountaingstat.R.txt
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NOW :  
 
One of the features of kriging is that it is an exact interpolator: 
that is, the kriged surface always fits the data points exactly 
(i.e. there are no errors at the actual observed locations).   
 
This makes it difficult to evaluate how well our model worked 
(and to compare models).  One way around this is to use 
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Cross Validation 
 
Simplest form : 

1) Leave one of the observed points ix  out of 

the dataset Nxxx ,..., 21 . 

2) Use the rest of the data to perform kriging 

3) Calculate  )(ˆ
iKrigY x  and calculate the residual : 

)(ˆ)( iKrigiKrigi YYr xx   

4) Repeat the above for all points in the dataset 
 
Cross validation as described above (leave one out) is done 
automatically in ArcGIS as the last step in the kriging process 
(i.e. last dialog box).  It provides various summaries of the 
residuals to evaluate the model fit  (check for normal residuals, 
plot observed vs. fitted, etc). 
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Example : pH data in ArcGIS, ordinary 
kriging.  A plot of observed vs. fitted values 
shows that kriging tends to overestimate low 
values and underestimate high values (notice 
that trend line in blue has smaller slope than dotted line of unity 
if there were no trend).  This is a feature of processes based 
on averages (it smooths out high points and fills in low points).  
This is more pronounced in the plot of Errors vs. Observed 
values (second tab).  Remember “regression toward the mean 
. . .”? 
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n-fold Cross Validation  
 
It is in fact possible to perform cross-validation by leaving out 
not just one point at a time but a fraction of the data set at a 
time.  This is called n-fold cross validation.  For example, 
five-fold cross validation leaves out one-fifth of the dataset at a 
time. 
 

 
 Cross-Validation in R.  Use the gstat function 

krige.cv().  The file above  provides the code that produced 

the plots below. 
 

Results are relatively similar for 5-fold cross validation and 
one-at-a-time cross validation. 

http://cran.r-project.org/index.html
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Smoky pH : Leave one out Residuals
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Last comment – if you have ‘other data’ that you didn’t use for 
kriging, you can compare the observed data to the kriged data 
as an estimate of your errors.  
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NOW : Let’s suppose that 

 At the points Nxxx ,..., 21 , I have data on the process 

 1Y  (say total biomass levels) 

 At the points Nxxx ,..., 21 I also have information on the 

process  2Y  (say satellite data) 

 I also have data on the process  2Y  at additional 

locations, say MNNN  xxx ,..., 21  

 

Example (not Smoky Mountain)  Metal 
concentrations on Vancouver Island  (from 
B&G).  This data is from the north-western part of 
Vancouver Island in BC, Canada.  There are 900+ 
observations.  For the sake of argument, let’s 
suppose that we had all 900+ observations of log(nickel), but only 300 
observations of log(cobalt).   
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 Suppose that the values of  1Y  and  2Y  are related to 

each other : that is, they are correlated. 

Example : Vancouver Island has sample correlation of 0.73 at 
points where cobalt and nickel are both measured (log scale). 

 Maybe we could use the correlation of  1Y  and  2Y  and 

the fact that we have  2Y  measured at more locations to 

improve my predictions of  1Y  over the domain A!  This is 

the idea behind . . . 
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Co-Kriging 

 Exists in several forms : Simple, Ordinary, Universal, Block, 
etc. 

 Widely used in environmental situations : 
Zimmerman, D. AND D. M. Holland. COMPLEMENTARY CO-KRIGING: SPATIAL PREDICTION USING DATA 
COMBINED FROM, SEVERAL POLLUTION MONITORING NETWORKS. ENVIRONMETRICS 16(3):219-234, 
(2005). 

Wu, Norvell, and Hopkins : Improved Prediction and Mapping of Soil Copper by Kriging with Auxiliary Data for 
Cation-Exchange Capacity  http://soil.scijournals.org/cgi/content/full/67/3/919 

Bolstad, Paul V.; Swank, Wayne; Vose, James. Predicting Southern Appalachian overstory vegetation with 
digital terrain data, Landscape Ecology. 13: 271-283. 

 

 Before we can talk about cokriging, we have to first discuss 
the 

 

http://soil.scijournals.org/cgi/content/full/67/3/919
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Cross-variogram 

 

Let’s suppose that the processes  1S  and  2S  

are both stationary (constant means 1  and 2  and constant 

variances 
2

1 and 
2

2 ).  We define the cross variogram as 
 

   )()()()()(2 221121
xuxxuxh SSSSESS 

 

(in words : on average, if I compare two points separated by a vector h, how do the 
values of  1Y  change as compared to how the values of  2Y  change?)  This is 

analogous to the idea of the Covariance! 

As with variograms, we won’t know this function directly, so we 
estimate it with  

  )()()()(
)(2

1
)(ˆ 22

]
2

1
,

2

1
[

1121 jiji xxxx
u

u YYYY
n lagulaguxx

SS

ji

 



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Again, as with kriging, we fit a model to 
21

ˆ SS .  The same 

models discussed for variograms apply to cross-variograms  
(exponential, spherical, etc). 

SO : back to co-kriging . . . . 
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Ordinary Co-kriging 

The basic idea of cokriging is to incorporate information 

about  1Y  into our predictions of  2Y  :  This means 

that our estimate is now a weighted average of both the 

values of  1Y  and  2Y . 






MN

j
jjY

N

i
iiYKrig YaYaY

1
2

1
101 )()()(ˆ

21
xxx  

As with other forms of kriging, we still want  KrigY1̂   

1) Unbiased  

2) Minimum Mean-Squared Prediction Error 
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Remember that unbiased means that  

      10101̂  xx YEYE Krig  

There are several ways to ensure that  KrigY1̂  is unbiased.  

However, a simple (and most common) way is to require that  

 


N

i
iYa

1

1
1

     and    1
1

2






MN

j
jYa  

At this point, do lots of math similar to that for other kinds of 
kriging, have two Lagrange multipliers (for constraints above).  
Rearrange and solve for weights and constraints : 
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Finally : Rearrange and solve for weights and constraints: 
 
or more concisely : 

00 C




 ca 1
 

The +’s indicate that these matrices are ‘expanded’ by rows/columns 

 to account for the unbiasedness constraints and additional variables 
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Note that there are THREE distinct variagrams: 

  
1Yγ  is the variagram for the  1Y  process (Cobalt) 

  
2Yγ  is the variagram for the  2Y  process (Nickel) 

  
21YYγ  is the cross-variagram for relating the  2Y  and 

 1Y  processes (how to Nickel and Cobalt co-vary) 
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Example : Vancouver Island.  We use cokriging to try to 
estimate log(Cobalt) levels using log(Nickel) 
values  (example in class using ArcGIS). 

A few things to note : 

 You need TWO datasets – one with nickel 
values, another with cobalt values 

 If you have the same number of observations in the two 
datasets, co-kriging will not help.  Just use regular kriging in 
that case. 
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Step 1 : Remove Trends (if any) 

Are there any linear / quadratic / other trends in cobalt 
presence?  How about for nickel?  Let’s make a few pictures . . 
. 

In ArcGIS, there is a TREND ANALYSIS tool in the 
Geostatistical Analyst 

 Click on the Cobalt point layer 

 Choose Geostat Analyst  Explore Data  Trend 
Analysis 

 Choose the correct attribute at the bottom of the window 

Here are pictures for cobalt and nickel : I didn’t see any trends 
in Cobalt, perhaps a linear trend in Nickel. 
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Cobalt      Nickel 

   

It’s a bit difficult to tell.  SO : let’s try Inverse Distance 
Weighting (basically smoothing which ignores covariance) 
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Here are the results for cobalt and nickel 

 

There is perhaps a bit of an uphill trend in the nickel model 
from right to left, so let’s fit a linear trend to nickel. 
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Step 2 : Perform 

Co-kriging 

To do cokriging in 
ArcGIS, use the 
GeoStatistical 
Analysts, choose 
Wizard, and then 
choose co-kriging.  You’ll need to specify both datasets.  Note 
that the FIRST dataset should be the smaller dataset that you are 
trying to cokrig. 

The next screen allows you to remove trends and choose the type 
of co-kriging you’d like (ordinary, simple, universal, probability, 
etc).  We start with ordinary, and remove a linear trend from nickel 
and no trend from cobalt. 
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Next, you choose the model for the 
semivariagrams (there are three 
here, remember, but you can only 
choose one FAMILY of variagrams to 
use in GIS).   

I found suggestions of anisotropy, so 
I fit an anisotropic model as well for 
the first variogram. 

Finally, results are given as far as predicted/observed values using 
cross-classification (errors are positive for low Cobalt values and 
negative for large Cobalt values, no surprise).  ALSO, we get the 
fitted parameters for our exponential varigram models : 

Note : You may need to extend the size of the layer used for cokriging – right-click on 
the kriged layer, choose Properties, choose Extant, and extend as necessary. 
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You may also want to trim the kriged surface to your domain polygon – right clock on 
the top LAYER bar, choose properties, choose data-frame, click on Enable Clip to 
Shape. 

Here are the results for ordinary co-kriging for cobalt : 
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 Here are the errors :
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Step 3 : Compare to Ordinary Kriging 

NOW : as a comparison, lets try ordinary kriging, ignoring the 
nickel data!  The output is shown in class . . . 

After fitting these two models, you can right click on either 
prediction layer and choose ‘compare models’.  Here are the 
results : 
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The average residual error is lower for cokriging for each 
statistic calculated (by the way, the sample standard deviation 
for the cobalt data is abobut 0.64, vs. about 0.45-0.47 for the 
kriged surface).
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Other kinds of Co-kriging 

 Universal Co-kriging : Expand the C matrix to include 

constraints to remove linear, quadratic trends 

 Indicator Co-kriging : use indicator variables 

 Block Co-kriging : average over Blocks 

Other Comments 

Note that you could easily add other variables for additional information to 
help your cokriging (i.e. just expand the matrix to include more covariograms 
and cross variograms between other variables).  GIS allows for up to three 
additional datasets. 
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Geographically Weighted Regression (GWR) 
 

Resources : 
 
Geographically Weighted Regression: The Analysis of 
Spatially Varying Relationships by A. Stewart 
Fotheringham et all. 
 
 
 

An Introduction to R for Spatial Analysis and Mapping 
by Chris Brunsdon 

 

 
R packages 

gwrr 

spgwr 

GWmodel 
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Usual multiple regression model in scalar notation :  if 

you have p  predictors, the linear model for the value of iY  

for a single observation i  is given by 
 

iippioi XXY   ...11   ,       ni ,...,2,1  

),0(~ 2 N
i

  and  )(εVar  

 

 The s' are global parameters  :  whatever their value, 

they apply everywhere in the spatial region being 
modeled 
 

  models the spatial correlation and possibly 
heteroscedasticity. 

 

 This is true regardless whether the s'  are covariates or 

just locations as in a trend surface model. 
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Idea of GWR : it may be that the s'  are NOT constant 

over the entire region 
 
They may exhibit a drift or trend in value depending on 
spatial location 
 
Random coefficients (random effects) in mixed-effects 
models is another way to let their value vary randomly.  
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A bit of Spatial Regression History : the Expansion 
Method (EM) 
 
Consider the usual simple linear regression model : 
 

iioi XY   11  
 

We could let the s' also be a linear function of the 

coordinate pair  ii vu ,  (say, easting, northing) : 

 

iio vu 020100    

ii vu 1211101    

 

Substituting, we get 
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    iiiiiii XvuvuY   1121110020100  

 
Intercept     Slope 

 

 We can fit this using ordinary least squares (OLS) 
 

 Also, the usual regression tools (significance, residual 
plots, qqplots, etc) all apply. 

 

 Notice this is somewhat different that Trend Surface 
Analysis (TSA) in that the relationship between the 

covariate X and the response Y can vary over space. 
 

 EM was developed in the early 1970’s as a first attempt 
to deal with spatial autocorrelation (the hope was that 
this would ‘take care’ of spatial autocorrelation in the 
mean part of the model. 
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Slight Detour : Locally Weighted Scatterplot Smoothing 
(LOWESS) and Local Polynomial Regression Fitting 
(LOESS) 
https://www.youtube.com/watch?v=ncF7ArjJFqM    https://www.youtube.com/watch?v=Zn3jw0-CfBc 

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_transreg_sect016.htm  

(quick picture here) 
(quick R-code example) 
 
x=c(1:200) 

true_y=10*sin(x/25)+x/10 

y=truey+rnorm(200,mean=0, sd=4) 

 

for (i in 1:20){ 

  plot(x,true_y, type='l', lwd=3,col='red', lty=2) 

  points(x,y,pch=19) 

  loess1=loess(y~x, span=i/20) 

  lines(loess1$x,loess1$fitted, col='green',lwd=3) 

  Sys.sleep(1) 

}  

https://www.youtube.com/watch?v=ncF7ArjJFqM
https://www.youtube.com/watch?v=Zn3jw0-CfBc
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_transreg_sect016.htm
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GWR (developed in late 1990’s) : it’s like spatial LOESS! 
 
GWR Model :  
 

The s' become functions of location  ii vu ,  

 

      iipiipiiiiioi XvuXvuvuY   ,...,, 11  

 

Now, we can’t actually estimate pnn *)1(*   different s'
: instead, perform what is essentially weighted regression, 
but the weights are spatially determined by some function of 
distance. 
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The ordinary least-squares estimate of our coefficients β  is 

given by (https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf ) 
 

  YXXXβ 
1~

 

 
The generalized least-squares estimate of our coefficients 

β  is given by (https://en.wikipedia.org/wiki/Generalized_least_squares ) (think 

Mahalanobis Distance) 

  YΣXXΣXβ
111ˆ    

 
 

  

https://isites.harvard.edu/fs/docs/icb.topic515975.files/OLSDerivation.pdf
https://en.wikipedia.org/wiki/Generalized_least_squares
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The geographically weighted least-squares estimate of 

our coefficients β  ii vu ,  is given by 

 

        YWXXWXββ iiiiii vuvuivu ,,ˆ,ˆ 1



   

 

Where               𝐖(𝑢𝑖 , 𝑣𝑖) = 𝐖(𝑖) = (

𝑤𝑖1 0 ⋯ 0
0 𝑤𝑖2 ⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑖𝑛

) 

 

And 𝑤𝑖𝑗 is determined by the distance from the jth 

observation to the ith observation, and 𝑤𝑖𝑗 = 1. 
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In general, each observation i will have a different weight 

matrix 𝐖(𝑖): hence, each location will have different values 

for  ii vu ,β̂  

 

 ii vu ,β̂ estimates for observations close to the ith 

observation will be similar in magnitude, but we should get a 
spatially yet smoothly varying surface of coefficient 
estimates.  The hope is that there will be no residual spatial 
autocorrelation to deal with. 
 
SO : how to determine the weights 𝑊(𝑖) ?  Think Kernel 
Smoothing! 
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Common Kernels 
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It is also possible to use spatially varying kernels where the 
bandwidth changes depending on the density of local 
observations.  See gw.adapt() in the spgwr package.  
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NOW – how to determine the ‘optimal’ bandwidth. 
 
All three R packages have a function to determine optimal 
bandwidth, where the optimum bandwidth b minimizes the 
cross-validation sum of squares : 
 

 



n

i
ii byyCV

1

2
)(ˆ  

 

Where )(ˆ by i  is the fitted value of iy  with the observations 

for point i omitted during the calibration process. 
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In spgwr, the optimal bandwidth function is the gwr.sel( 

). With kernal options of gwr.Gauss or gwr.bisquare 

only. The kernal is specified with its gweight argument of 

the gwr.sel( ) function. 

 
In gwrr it is the gwr.bw.est( ) function with the 

exponential or gauss kernal options.   
 
In GWmodel it is the bw.gwr() function with five kernal 

options: gaussian, exponential, bisquare, tricube, and boxcar. 
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EXAMPLE of GWR : Meuse River Data 
 
http://reuningscherer.net/fes781/Rscripts/GWR_meuse.txt  

http://reuningscherer.net/fes781/Rscripts/GWR_meuse.txt
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